Abstract: A semiconductor device that may include temperature sensing circuits is disclosed. The temperature sensing circuits may be used to control various parameters, such as internal regulated supply voltages, internal refresh frequency, or a word line low voltage. In this way, operating specifications of a semiconductor device at worst case temperatures may be met without compromising performance at normal operating temperatures. Each temperature sensing circuit may include a selectable temperature threshold value as well as a selectable temperature hysteresis value. In this way, temperature performance characteristics may be finely tuned. Furthermore, a method of testing the temperature sensing circuits is disclosed in which a current value may be monitored and temperature threshold values and temperature hysteresis values may be thereby determined.
Abstract: A semiconductor device that may include temperature sensing circuits is disclosed. The temperature-sensing circuits include an amplifier, a transistor, a temperature threshold resistance and a hysteresis resistance, and a latch. The amplifier includes a positive input and a negative input where the negative input is configured to be driven by a temperature-independent signal. The transistor is electrically coupled to the positive input where the transistor is configured to be controlled by a temperature signal. The temperature threshold resistance and a hysteresis resistance is electrically coupled in series to the positive input, wherein the hysteresis resistance is configured to be controlled, at least in part, by an output of the amplifier. The latch is configured to latch the output of the amplifier after a time delay initiated by a transition of a temperature detect signal.
Abstract: A semiconductor device that may include temperature sensing circuits is disclosed. The temperature sensing circuits may be used to control various parameters, such as internal regulated supply voltages, internal refresh frequency, or a word line low voltage. In this way, operating specifications of a semiconductor device at worst case temperatures may be met without compromising performance at normal operating temperatures. Each temperature sensing circuit may include a selectable temperature threshold value as well as a selectable temperature hysteresis value. In this way, temperature performance characteristics may be finely tuned. Furthermore, a method of testing the temperature sensing circuits is disclosed in which a current value may be monitored and temperature threshold values and temperature hysteresis values may be thereby determined.