Abstract: An inkjet printing method including, in order, the steps of: a) providing at least two or more color inkjet inks of the same color and color density but having a different composition to an inkjet printer; b) mixing the two or more color inkjet inks in a controlled amount; and c) printing the mixture of the two or more color inkjet inks with the inkjet printer onto an ink-receiver. An inkjet printer and an inkjet ink set include two or more color inkjet inks of the same color and color density but having a different composition.
Abstract: A process, and to a corresponding apparatus for reading out and erasing X-ray information stored in storage phosphor layers, comprising the following: irradiating the storage phosphor layer (1) with stimulation light (3) by means of which the storage phosphor layer (1) is stimulated to emit emission light, collecting the emission light emitted at different locations (x, y) of the storage phosphor layer (1) with a detector (7), detector signal values (D(x, y)) being obtained for different locations (x, y) of the storage phosphor layer (1), and irradiating the storage phosphor layer (1) with erasing light (21), the quantity of erasing light (21) being determined by means of the detector signal values (D(x, y)).
Type:
Grant
Filed:
August 11, 2010
Date of Patent:
October 2, 2012
Assignee:
Agfa HealthCare N.V.
Inventors:
Stephan Mair, Thomas Hartmann, Bernd Gerstlauer
Abstract: The invention deals with a method for replacing the colorant values of a raster image by a new set of colorant values that is for example optimized for a standardized printing process. According to the invention, a forward look up table is identified that transforms the colorant values in the raster image into color values. The color values in this look up table are separated into new colorant values to obtain a colorant to colorant interpolation look up table. This is done by using an inverse transformation that is based on the forward look up table using appropriate separation parameters for the standardized printing process. The method has the advantage that it enables to map pure colorant values in the original image back onto pure colorant values in the transformed image.
Abstract: A method of making a flexographic printing form precursor for laser engraving including the steps of (i) providing at least one layer of a curable composition on a substrate; (ii) curing the at least one layer; wherein the curable composition defining an outermost layer includes at least 0.5% by weight relative to the total weight of the composition of an organo-silicon compound including at least one polymerizable group; and a urethane (meth)acrylate oligomer having three or less polymerizable groups.
Abstract: Non-aqueous pigment dispersions exhibit improved dispersion quality and/or stability for a specific selection of naphthol AS pigments and azo pigments by using specific quinacridone dispersion synergists. The non-aqueous pigment dispersions can be advantageously used in inkjet inks inkjet printing methods.
Abstract: A security film including a support (1) and a laser markable layer (3), wherein the laser markable layer includes i) a laser additive; ii) a polymer selected from the group consisting of polystyrene, polycarbonate and styrene acrylonitrile; iii) an initiator; and iv) at least 15 wt % of radiation curable compound based on the total dry weight of the laser markable layer, wherein the radiation curable compound has a viscosity of less than 100 mPa·s at 25° C. and at a shear rate of 100 s?1. A security document and a method for preparing the security film are also disclosed.
Type:
Application
Filed:
December 17, 2010
Publication date:
September 13, 2012
Applicant:
AGFA-GEVAERT N.V.
Inventors:
Carlo Uyttendaele, Bart Aerts, Bart Waumans, Ingrid Geuens
Abstract: A security document precursor including one or more lamellae provided with two or more holes near a perimeter edge surface of the precursor, wherein the holes perforate the largest surface of the one or more lamellae, and wherein at least one of the holes is filled with a coloured material which differs in colour from at least one of the one or more lamellae, such that the coloured material is visible from a direction perpendicular on the perimeter edge surface; wherein at least one of the one or more lamellae is transparent or translucent: or wherein at least one of the one or more lamellae is opaque and the opaque part of the at least one of the one or more lamellae between the perimeter edge and the hole filled with a coloured material has been removed. A security document and a method of preparing the security document precursor are also disclosed.
Abstract: A security film including, in order, a transparent biaxially oriented polyethylene terephthalate support (1), a subbing layer (2, 2?) and a laser markable layer (3, 3?) comprising a laser additive and one or more polymers selected from the group consisting of polystyrene, polycarbonate and styrene acrylonitrile.
Type:
Application
Filed:
December 17, 2010
Publication date:
August 30, 2012
Applicant:
AGFA-GEVAERT N.V.
Inventors:
Carlo Uyttendaele, Bart Aerts, Bart Waumans, Ingrid Geuens
Abstract: A method of making a flexographic printing forme precursor for laser engraving including the steps of (i) providing at least one layer of a curable composition on a substrate; (ii) curing the at least one layer; wherein the curable composition defining an outermost layer includes at least 0.5% by weight relative to the total weight of the composition of an organo-silicon compound including at least one polymerizable group; and a urethane (meth)acrylate oligomer having three or less polymerizable groups.
Abstract: A lithographic printing plate precursor includes a cyanine dye, characterized in that the cyanine dye includes two different chromophoric groups, a chromophoric group that has its main absorption in the infrared region and another chromophoric group that has its main absorption in the visible light region.
Abstract: Non-aqueous pigment dispersions exhibiting improved dispersion quality and/or stability were prepared for a specific selection of quinacridone pigments, diketopyrrolo-pyrrole pigments and azo pigments by using specific naphthol AS dispersion synergists. The non-aqueous pigment dispersions can be advantageously used in inkjet inks inkjet printing methods.
Abstract: A method of preparing a pigment includes in order the steps of: a) providing a pigment containing a nucleophile group under basic conditions; b) reacting the pigment with 1,4-butane sultone or 1,3-propane sultone in an alkaline medium to form sulfobutyl groups respectively sulfopropyl groups on the pigment surface; and c) adding acid to convert the sulfobutyl groups or sulfopropyl groups to sulfonic acid groups. Pigments obtainable by the method and non aqueous pigment dispersions are also disclosed.
Abstract: Non-aqueous pigment dispersions exhibiting improved dispersion quality and/or stability were prepared for a specific selection of naphthol AS pigments, diketopyrrolo-pyrrole pigments and quinacridone pigments, by using specific yellow monoazo dispersion synergists. The non-aqueous pigment dispersions can be advantageously used in inkjet inks inkjet printing methods.
Abstract: A method of preparing a pigment includes the steps of: a) providing a mixture including: a pigment selected from the group of pigments including at least 50 wt % of C.I. Pigment Violet 23, C.I. Pigment Red 146, C.I. Pigment Red 176, C.I. Pigment Red 177, C.I. Pigment Violet 19 and C.I. Pigment Orange 13 based on the total weight of the pigment; alkyl nitrile; and at least one acid selected from the group consisting of sulfuric acid and chlorosulfuric acid, with the acid present in the mixture in amount of more than 2 wt % based on the total weight of the pigment; b) heating the mixture for more than 2 hours to a temperature of at least 70° C.; and c) filtering the mixture and washing the filtrand with a washing liquid containing water until the filtrate has a pH between 4 and 7. Pigments obtainable by the method and non aqueous pigment dispersions are also disclosed.
Abstract: A combination of: a) an inkjet print head having a nozzle density of at least 600 dpi and nozzles with an outer nozzle diameter D smaller than 25 ?m; and b) a UV curable inkjet composition containing 0 to 10 wt % of one or more monofunctional monomers and at least A wt % of 2-(2-vinyloxyethoxy)ethyl acrylate, wherein both wt % are based on the total weight of the UV curable inkjet composition; and wherein A is defined by the formula 100 wt %?D×3.0 wt %/?m?A?100 wt %?D×1.0 wt %/?m.
Abstract: A method of making a lithographic printing plate includes the steps of a) providing a lithographic printing plate precursor including (i) a support having a hydrophilic surface or which is provided with a hydrophilic layer, (ii) a coating on the support including a photopolymerizable layer, and, optionally, an intermediate layer between the photopolymerizable layer and the support, b) image-wise exposing the coating in a plate setter, c) optionally, heating the precursor in a preheating unit, and d) developing the precursor off-press in a gumming unit by treating the coating of the precursor with a gum solution, thereby removing the non-exposed areas of the coating from the support, wherein the coating further includes a compound capable of interacting with the support, the compound being present in the photopolymerizable layer and/or in the intermediate layer.
Type:
Grant
Filed:
November 9, 2006
Date of Patent:
July 31, 2012
Assignee:
Agfa Graphics NV
Inventors:
Alexander Williamson, Marc Van Damme, Willi-Kurt Gries
Abstract: Method to bring out a temporal difference between corresponding structures in a reference image R and a floating image F by convolving the reference image R and the floating image F with a window function Hw to generate Rw and Fw, applying a non-rigid transformation resulting in a transformation field g(rR) mapping every location rR to a corresponding location rF in the floating image F and generating a subtraction image by performing subtraction Rw(r)?Fw(g(r)) wherein r represents a voxel (x, y, z) in reference image R.
Type:
Grant
Filed:
February 8, 2008
Date of Patent:
July 24, 2012
Assignee:
Agfa HealthCare N.V.
Inventors:
Dieter Seghers, Piet Dewaele, Paul Suetens
Abstract: A workflow method for temporal nodule review by registering a reference image R with a floating image F, convolving the reference image R and the floating image with the same window function Hw to generate Rw and Fw, generating a subtraction image by performing subtraction Rw?Fw (g(r)) wherein r represents a voxel (x, y, z) in reference image R, applying a pattern detector to said subtraction image to detect corresponding nodules in reference image R and floating image F and displaying corresponding nodules.
Type:
Grant
Filed:
February 8, 2008
Date of Patent:
July 24, 2012
Assignee:
Agfa HealthCare N.V.
Inventors:
Dieter Seghers, Piet Dewaele, Paul Suetens
Abstract: A radiation curable inkjet fluid includes a radiation curable composition including at least 25 wt % of a vinylether acrylate and at least 15 wt % of a polymerizable compound including at least three acrylate groups, each wt % being based upon the total weight of the radiation curable composition; and a photoinitiator including a tertiary amine group and 0 to 3 wt % of isopropylthioxanthone based upon the total weight of the radiation curable inkjet fluid. Also, an inkjet printing method using the radiation curable inkjet fluid.
Abstract: An image point in a displayed reference image R is selected and a non-rigid transformation resulting in a transformation field g(rR) mapping every location rR to a corresponding location rF in a floating image F is applied, next a rigid body transformation is applied to floating image F such that rF coincides with the selected image point and the transformed floating image is displayed.
Type:
Grant
Filed:
February 8, 2008
Date of Patent:
July 17, 2012
Assignee:
Agfa HealthCare N.V.
Inventors:
Dieter Seghers, Piet Dewaele, Paul Suetens