Abstract: An ion pump with a housing enclosing an interior, a gas inlet having a through-hole extending into the interior of the ion pump, at least one cathode, at least one anode positioned in proximity to the at least one cathode, a magnet disposed on an opposite side of the at least one cathode from the anode, and a blocking shield disposed between the gas inlet and the at least one cathode. The blocking shield is electrically connected to the at least one anode. An associated method installs the blocking shield by inserting components of the blocking shield assembly through the gas inlet, and assembling (inside the interior of the ion pump) the inserted components to form the blocking shield.
Type:
Grant
Filed:
December 18, 2019
Date of Patent:
June 7, 2022
Assignee:
Agilent Technologies, Inc.
Inventors:
Cristian Maccarrone, Chiara Paolini, Enrica Carbonero, Paolo Manassero
Abstract: Devices, systems and methods for monitoring excitable cells, such as cardiomyocytes, on microelectrode arrays that couple the electro-stimulation of excitable cells to induce or regulate cardiomyocyte beating and the simultaneous measurement of impedance and extracellular recording to assess changes in cardiomyocyte beating, viability, morphology or electrophysical properties in response to a plurality of treatments.
Type:
Grant
Filed:
December 19, 2019
Date of Patent:
May 31, 2022
Assignee:
Agilent Technologies, Inc.
Inventors:
Xiaobo Wang, Wei Ouyang, Nan Li, Tianxing Wang, Xiaoyu Zhang, Xiao Xu, Yama A. Abassi
Abstract: A sample management device which comprises a source flow path in which a fluidic sample can flow, a volume flow adjustment unit configured for adjusting a volume flow of the fluidic sample to be branched off from the source flow path at a fluidic coupling point, and a fluidic valve fluidically coupled with the source flow path and with the volume flow adjustment unit, wherein the fluidic valve is switchable into a branch off state in which the fluidic coupling point is established within the source flow path to branch off an adjustable volume of the fluidic sample from the source flow path via the fluidic coupling point while a flow of the fluidic sample in the source flow path continues.
Abstract: A capillary electrophoresis system includes a capillary reservoir. The capillary reservoir includes a capillary tip flow chamber configured to receive respective capillary tips and to conduct fluid past the capillary tips, and an electrode flow chamber in which an electrode is disposed and configured to conduct fluid past the electrode, the electrode flow chamber being separate from and in fluid communication with the capillary tip flow chamber. An ultraviolet (UV) light absorbance-based multiplexed capillary electrophoresis system includes a first enclosure and a second enclosure. The first enclosure covers a UV light source, and includes a slit. The second enclosure covers the first enclosure, a collimating lens, and a capillary window.
Type:
Grant
Filed:
August 15, 2017
Date of Patent:
May 24, 2022
Assignee:
Agilent Technologies, Inc.
Inventors:
Michael Stebniski, Bruce R. Boeke, Martin Chris Foster, Scott Stueckradt, Thomas J. Kurt
Abstract: An apparatus and method for generating a mid-infrared region image of a specimen are disclosed. The apparatus includes a mid-infrared region laser that generates a first light beam, and a stage adapted to carry a specimen to be scanned. An optical assembly focuses the first light beam to a point on the specimen. A first light detector measures a first intensity of light leaving the point on the specimen. A stage actuator assembly causes the specimen to move relative to the point in two dimensions. A controller forms a mid-infrared region image from the first intensity. The image can be based on reflected or transmitted light. The maximum size of the imaged area is determined by a scanning assembly that moves in a first direction relative to the stage, the stage moving in a direction orthogonal to the first direction.
Abstract: Compounds and methods for purifying oligonucleotides such as RNA and DNA. A target oligonucleotide is reacted with an orthoester linker comprising an affinity tag to form an orthoester oligonucleotide-orthoester linker conjugate which is subjected to a purification technique to separate the target oligonucleotide from impurities such as truncated oligonucleotides. The orthoester linker can be then removed under mild conditions to generate the target oligonucleotide in high purity.
Type:
Grant
Filed:
August 17, 2018
Date of Patent:
April 12, 2022
Assignee:
Agilent Technologies, Inc.
Inventors:
Douglas J. Dellinger, Joel Myerson, Brian Smart
Abstract: A gas leak detector cartridge includes a cartridge housing that is removably installed in a handheld device. The cartridge housing includes a sensor that detects a presence of a contaminant in a sample gas and is connected to a printed circuit board. The cartridge housing also includes a pump positioned in a manifold and introduces a sample gas to the sensor. The sensor is at least partially inserted into the manifold that includes the pump.
Abstract: A system for detecting signal components of light induced by multiple excitation sources including: a flow channel including at least two spatially separated optical interrogation zones; a non-modulating excitation source that directs a light beam of a first wavelength at a near constant intensity onto a first of the optical interrogation zones; a modulating excitation source that directs a light beam of a second wavelength with an intensity modulated over time at a modulating frequency onto a second of the optical interrogation zones; a detector subsystem comprising a set of detectors configured to detect light emitted from particles flowing through the at least two optical interrogation zones and to convert the detected light into a total electrical signal; and a processor that determines signal components from the light detected from each of the optical interrogation zones.
Type:
Grant
Filed:
March 27, 2020
Date of Patent:
March 29, 2022
Assignee:
Agilent Technologies, Inc.
Inventors:
Nan Li, Jian Wu, Ye Chen, Tianxing Wang, Xiaobo Wang
Abstract: An injector, for injecting a fluidic sample into a flow path between a fluid drive and a sample separation unit, includes a sample accommodation volume, a sample drive, and a fluidic valve switchable to selectively couple the volume with the flow path or decouple the volume from the flow path. In an injection switching state, the fluid drive, the separation unit and the sample drive are coupled by the valve so that fluid driven by the sample drive and flowing from the volume to the separation unit and further fluid driven by the fluid drive and flowing from the fluid drive to the separation unit are combined at a fluidic connection upstream of the separation unit. A control unit controls a pressure of the fluid and/or the further fluid during injecting.
Type:
Grant
Filed:
March 27, 2020
Date of Patent:
March 15, 2022
Assignee:
Agilent Technologies, Inc
Inventors:
Daniel Thielsch, Thomas Ortmann, Sam Wouters
Abstract: A microfluidic apparatus for separating a droplet of an emulsion in a microfluidic environment is described. The microfluidic apparatus includes a flow cell comprising a first microfluidic channel configured for flowing a first fluid through the flow cell and a second microfluidic channel configured for flowing a stream of a second fluid through the flow cell. The microfluidic apparatus further comprises a first electrode positioned at the first microfluidic channel and a second electrode positioned at the second microfluidic channel on an opposite side of the interface with respect to the first electrode. The first electrode, the second electrode, and the first and second microfluidic channels are configured to generate a non-uniform electric field gradient in the microfluidic apparatus.
Abstract: A method for operating a data processing system to find peaks in a mass spectrum that includes an ordered set of measurements of the abundances of species as a function of the mass/charge ratio of the species is disclosed. The method includes selecting a candidate blob that has a plurality of blob peaks from the mass spectrum. The data processing system selects a candidate blob peak for characterization. The candidate blob peak is approximated by a first species peak using a species peak model having a plurality of parameters by fitting the species peak model to a portion of the blob that has values that are substantially free of contributions from other species peaks that overlap with the first species peak and that are not represented by the species peak model. The first species peak is then subtracted from the candidate blob.
Abstract: The present disclosure is directed to an improved method for distinguishing tissue from an embedding medium, such as paraffin in a formalin-fixed paraffin-embedded sample. The method involves the use of fluorescence of naturally-occurring species in tissue to determine the location of the tissue in the embedded sample. An embedded sample is generally excited by light of a selected wavelength, and the fluorescence emission at an emitted wavelength is used to locate the boundary or location of the tissue in the embedded sample.
Type:
Grant
Filed:
December 21, 2020
Date of Patent:
February 8, 2022
Assignee:
Agilent Technologies, Inc.
Inventors:
Kyle Schleifer, Kristin Briana Bernick, Adrienne Mccampbell, Nicholas M. Sampas, Victor Lim
Abstract: Systems and methods for controlling mass filtering of polyatomic ions in an ion beam passing through an inductively coupled plasma mass spectrometer (ICP-MS). Polyatomic ion mass data representative of the exact mass of a polyatomic ion having a target isotope is determined. A control signal is generated based on the determined polyatomic ion mass data and output to an ICP-MS to filter based on mass the polyatomic ions in the ion beam traveling through the ICP-MS to an ion detector.
Type:
Grant
Filed:
August 20, 2019
Date of Patent:
February 1, 2022
Assignee:
Agilent Technologies, Inc.
Inventors:
Naoki Sugiyama, Amir Liba, Mark Lee Kelinske, Glenn David Woods
Abstract: A method of manufacturing a component having a flow path, wherein the method includes forming a high pressure resistant casing with a cavity therein, inserting a body of bioinert material into the cavity to thereby form a composite block, and further processing the composite block for at least partially forming the flow path defined by the component.
Abstract: Electron capture dissociation (ECD) is performed by transmitting an electron beam through a cell along an electron beam axis, generating plasma in the cell by energizing a gas with the electron beam, and transmitting an ion beam through the interaction region along an ion beam axis to produce fragment ions. Generating the plasma forms an interaction region in the cell spaced from and not intersecting the electron beam, and including low-energy electrons effective for ECD. The ion beam axis may be at an angle to and offset from the ion beam axis, such that the electron beam does not intersect the ion beam.
Type:
Grant
Filed:
March 11, 2019
Date of Patent:
January 4, 2022
Assignee:
Agilent Technologies, Inc.
Inventors:
Kenneth R. Newton, Nigel P. Gore, Mark Denning
Abstract: A fitting for providing a fluid connection between a capillary and a fluidic conduit of a fluidic component, the fitting comprising a male piece and a female piece for connection with the male piece, wherein the male piece comprises a housing with a capillary reception configured for receiving the capillary, wherein a part of the capillary being received in the capillary reception is circumferentially covered by a sleeve, an elastic biasing mechanism being arranged at least partially within the housing, being configured for biasing the capillary against the female piece and being supported by the sleeve, and a locking mechanism being arranged at least partially within the housing and being configured for locking the capillary to the fitting.
Abstract: A method of handling a fluidic sample in a sample separation device includes at least partly immobilizing the fluidic sample by an immobilizing agent inhibiting spatial broadening of the fluidic sample, and subsequently at least partly releasing the fluidic sample from the immobilizing agent.
Abstract: Ammonium cation detergents comprising a quaternary or tertiary ammonium cation can be used as detergents to denature proteins and are particularly useful in denaturing glycoproteins or glycopeptides prior to enzymatic deglycosylation. Ammonium cation detergents with sulfate or sulfonate anions are particularly useful.
Type:
Application
Filed:
August 10, 2021
Publication date:
December 2, 2021
Applicant:
Agilent Technologies, Inc.
Inventors:
Michael J. KIMZEY, Francis T. HAXO, Vaishali SHARMA
Abstract: A method of calibrating a spectrophotometer comprising a flash lamp. The method comprises receiving light from the flash lamp at a monochromator of the spectrometer, wherein the flash lamp is a short arc noble gas flash lamp with transverse or axially aligned electrodes; configuring the monochromator to progressively transmit the received light at each of a plurality wavelengths of a selected range of wavelengths, wherein the range of wavelengths is associated with a wavelength feature according to a known spectral profile of the flash lamp, and wherein the wavelength feature is a self-absorption feature; and determining a spectrum of the flash lamp, wherein the spectrum comprises a corresponding power or intensity value for each of the plurality of wavelengths.