Patents Assigned to Agilome, Inc.
  • Publication number: 20190181273
    Abstract: Provided herein are devices, systems, and methods of employing the same for the performance of bioinformatics analysis. The apparatuses and methods of the disclosure are directed in part to large scale graphene FET sensors, arrays, and integrated circuits employing the same for analyte measurements. The present GFET sensors, arrays, and integrated circuits may be fabricated using conventional CMOS processing techniques based on improved GFET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense GFET sensor based arrays. Improved fabrication techniques employing graphene as a reaction layer provide for rapid data acquisition from small sensors to large and dense arrays of sensors. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes, including DNA hybridization and/or sequencing reactions.
    Type: Application
    Filed: May 16, 2017
    Publication date: June 13, 2019
    Applicant: Agilome, Inc.
    Inventors: Pieter van ROOYEN, Mitchell LERNER, Paul HOFFMAN
  • Patent number: 10020300
    Abstract: Provided herein are integrated circuits for use in performing analyte measurements and methods of fabricating the same. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in chemical and/or biological processes, including DNA hybridization and/or sequencing reactions. The methods for fabricating the integrated circuits include steps of depositing an insulating layer on a semiconducting substrate, and forming trenches in the insulating dielectric layer. Conductive material may be deposited in the trenches to form electrodes, and the insulating layer may be conditioned so that the electrodes protrude above the insulating layer. A 2D material, such as graphene, may be deposited on the electrodes to form a channel between the electrodes.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: July 10, 2018
    Assignee: AGILOME, INC.
    Inventor: Paul Hoffman
  • Patent number: 10006910
    Abstract: This invention concerns Chemically-sensitive Field Effect Transistors (ChemFETs) that are preferably fabricated using semiconductor fabrication methods on a semiconductor wafer, and in preferred embodiments, on top of an integrated circuit structure made using semiconductor fabrication methods. The instant ChemFETs typically comprise a conductive source, a conductive drain, and a channel composed of a one-dimensional (1D) or two-dimensional (2D) transistor nanomaterial, which channel extends from the source to the drain and is fabricated using semiconductor fabrication techniques on top of a wafer. The ChemFET also includes a gate, often the gate voltage is provided through a fluid or solution proximate the ChemFET. Such ChemFETs, preferably configured in independently addressable arrays, may be employed to detect a presence and/or concentration changes of various analyte types in chemical and/or biological samples, including nucleic acid hybridization and/or sequencing reactions.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: June 26, 2018
    Assignee: Agilome, Inc.
    Inventor: Paul Hoffman
  • Patent number: 9857328
    Abstract: This invention concerns chemically-sensitive field effect transistors (FETs) are preferably fabricated using semiconductor fabrication methods on a semiconductor wafer, and in preferred embodiments, on top of an integrated circuit structure made using semiconductor fabrication methods. The instant chemically-sensitive FETs typically comprise a conductive source, a conductive drain, and a channel composed of a one-dimensional (1D) or two-dimensional (2D) transistor material, which channel extends from the source to the drain and is fabricated using semiconductor fabrication techniques on top of a wafer. Such chemically-sensitive FETs, preferably configured in independently addressable arrays, may be employed to detect a presence and/or concentration changes of various analyte types in chemical and/or biological samples, including nucleic acid hybridization and/or sequencing reactions.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: January 2, 2018
    Assignee: Agilome, Inc.
    Inventor: Paul Hoffman
  • Patent number: 9859394
    Abstract: Provided herein are devices, systems, and methods of employing the same for the performance of bioinformatics analysis. The apparatuses and methods of the disclosure are directed in part to large scale graphene FET sensors, arrays, and integrated circuits employing the same for analyte measurements. The present GFET sensors, arrays, and integrated circuits may be fabricated using conventional CMOS processing techniques based on improved GFET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense GFET sensor based arrays. Improved fabrication techniques employing graphene as a reaction layer provide for rapid data acquisition from small sensors to large and dense arrays of sensors. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes, including DNA hybridization and/or sequencing reactions.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: January 2, 2018
    Assignee: Agilome, Inc.
    Inventors: Paul Hoffman, Mitchell Lerner, Pieter van Rooyen