Patents Assigned to AgJunction LLC
  • Publication number: 20180095476
    Abstract: A control system fuses different sensor data together to determine an orientation of a vehicle. The control system receives visual heading data for the vehicle from a camera system, global navigation satellite system (GNSS) heading data from a GNSS system, and inertial measurement unit (IMU) heading data from an IMU. The control system may assign weights to the visual, GNSS, and IMU heading data based on operating conditions of the vehicle that can vary accuracy associated with the different visual, GNSS, and IMU data. The control system then uses the weighted visual, GNSS, and IMU data to determine a more accurate vehicle heading.
    Type: Application
    Filed: October 2, 2017
    Publication date: April 5, 2018
    Applicant: AGJUNCTION LLC
    Inventors: Tommy Ertbolle Madsen, Glen Sapilewski, Anant Sakharkar, Jean-Marie Eichner, Steven J. Dumble
  • Patent number: 9903953
    Abstract: A DGNSS-based guidance system, wherein a rover receiver first utilizes data from a master base station transceiver, a DGNSS reference network, or some other differential source to compute a differentially corrected location to establish a reference DGNSS relationship. Using this location and data observed only at the rover, the rover computes an internal set of differential corrections, which set is stored in computer memory, updated as necessary, and applied in future times to correct observations taken by the rover. As the rover enters into areas of other base station receiver reference networks, the rover transceiver will send positional information it receives from the master base station to the new, secondary base station. The secondary base station then calibrates its own reference information using information sent from the original master base station.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: February 27, 2018
    Assignee: AGJUNCTION LLC
    Inventor: John A. McClure
  • Patent number: 9886038
    Abstract: A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. Relative orientations and attitudes between motive and working components can be determined using optical sensors and cameras. The system can also be used to guide multiple vehicles in relation to each other.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: February 6, 2018
    Assignee: AGJUNCTION LLC
    Inventors: Mark R. Webber, Keith R. Jones, John A. McClure, Andre C. Roberge, Walter J. Feller, Michael L. Whitehead
  • Patent number: 9880562
    Abstract: A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. Relative orientations and attitudes between motive and working components can be determined using optical sensors and cameras. The system can also be used to guide multiple vehicles in relation to each other.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: January 30, 2018
    Assignee: AGJUNCTION LLC
    Inventors: Mark R. Webber, Keith R. Jones, John A. McClure, Andre C. Roberge, Walter J. Feller, Michael L. Whitehead
  • Patent number: 9857478
    Abstract: A steering actuator system to be mounted to the steering wheel and steering column of a vehicle. The steering actuator system includes a flat baseplate with multiple adjustable sliders. These sliders slide along channel guides within the flat baseplate to accommodate steering wheels of varying sizes. The system includes a gear which mounts below the steering wheel, possibly around the steering column of the vehicle. A steering actuator powered by a motor or some other power source is connected to the gear and when activated can actively steer the vehicle. When connected to a guidance system, the vehicle can automatically be guided and steered via the guidance system and the steering actuator system. This provides a convenient way to add automatic steering to any vehicle with a steering wheel.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: January 2, 2018
    Assignee: AGJUNCTION LLC
    Inventor: Alan Robert Joughin
  • Publication number: 20170300055
    Abstract: A system and method for interrupting a Global Navigation Satellite System (GNSS)-based automatic steering mode of a hydraulic steering system on a vehicle. When a steering wheel is manually turned by an operator, pressurized hydraulic fluid from a steering directional control valve activates an interrupter having an interrupter valve. The interrupter valve blocks pressurized field flow to the automatic steering system, thus overriding automatic steering and giving the operator full manual steering control via the steering wheel. The hydraulic interrupt system is mechanical with no electronic elements.
    Type: Application
    Filed: June 29, 2017
    Publication date: October 19, 2017
    Applicant: AgJunction LLC
    Inventors: Joshua M. GATTIS, Steven A. KOCH
  • Publication number: 20170293303
    Abstract: A line acquisition system predicts and displays an acquisition path to reduce the uncertainty surrounding the path taken by a vehicle when acquiring a destination path. The line acquisition system calculates the drivable acquisition path based on the current states of the vehicle, such as position, speed, heading, and curvature. The line acquisition system continually updates and displays the acquisition path as the vehicle is manually steered by the user. When the user engages a steering controller, the last calculated acquisition path is used to automatically steer the vehicle onto the destination path. Displaying the acquisition path allows the user to observe, prior to automatic steering engagement, the path the vehicle would take from its current state to the destination. The user can then decide whether the predicted acquisition path will interfere with terrain or obstacles that the user wishes to avoid.
    Type: Application
    Filed: April 10, 2017
    Publication date: October 12, 2017
    Applicant: AGJUNCTION LLC
    Inventors: Eran D.B. MEDAGODA, Timothy J. SULLIVAN, Tri M. DANG
  • Publication number: 20170293304
    Abstract: A line acquisition system generates a curvature profile based on initial vehicle states (starting position, heading, curvature and speed), vehicle steering capabilities (calibrated vehicle curvature and curvature rate limits), and initial vehicle position errors relative to the destination path. The curvature profile describes changes in vehicle curvature over a path distance from a current position to a destination path. The line acquisition system constructs an acquisition path from a combination of clothoid, circular arc, and straight lines corresponding with different segments of the curvature profile. The acquisition path can be displayed on a user interface allowing a vehicle operator to observe, prior to automatic steering engagement, the path the vehicle would take from a current state to the destination path.
    Type: Application
    Filed: April 10, 2017
    Publication date: October 12, 2017
    Applicant: AGJUNCTION LLC
    Inventors: Tri M. DANG, Timothy J. Sullivan, Eran D.B. Medagoda
  • Patent number: 9781915
    Abstract: A global navigation satellite system (GNSS) based control system is provided for positioning a working component relative to a work surface. Inertial measurement unit (IMU) sensors, such as accelerometers and gyroscopes, are mounted on the working component and provide positioning signals to a control compute engine. A method of positioning a working component relative to a work surface using GNSS-based positioning signals is also disclosed.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: October 10, 2017
    Assignee: AGJUNCTION LLC
    Inventors: Joshua M. Gattis, Steven A. Koch
  • Publication number: 20170242048
    Abstract: A thermal stabilization system stabilizes inertial measurement unit (IMU) performance by reducing or slowing operating variations over time of the internal temperature. More specifically, a thermoelectric heating/cooling device operates according to the Peltier effect, and uses thermal insulation and a mechanical assembly to thermally and mechanically couple the IMU to the thermoelectric device. The thermal stabilization system may minimize stress on the IMU and use a control system to stabilize internal IMU temperatures by judiciously and bidirectionally powering the thermoelectric heating/cooling device. The thermal stabilization system also may use compensation algorithms to reduce or counter residual IMU output errors from a variety of causes such as thermal gradients and imperfect colocation of the IMU temperature sensor with inertial sensors.
    Type: Application
    Filed: January 31, 2017
    Publication date: August 24, 2017
    Applicant: AGJUNCTION LLC
    Inventor: Jeremy Sinclair SOMMER
  • Publication number: 20170144701
    Abstract: A guidance system identifies a path on a field and then calculates a position and heading of a trailer relative to the path. The guidance system steers a vehicle connected to the trailer based on the calculated trailer position and heading to minimize the trailer positional error and more quickly and accurately align the trailer with the path. The guidance system may align the trailer with the path while steering the vehicle in a reverse direction and may steer the vehicle based on a predicted trailer position and heading.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 25, 2017
    Applicant: AGJUNCTION LLC
    Inventors: Eran D.B. MEDAGODA, Timothy J. SULLIVAN, Brendan M. JOINER, Andreas F. RAMM, Tri M. DANG
  • Publication number: 20170147005
    Abstract: A navigation system aids a driver of a collection vehicle in keeping pace and distance with a lead harvester while collecting grain. The navigation system can be used for any leader-follower vehicle drive formation. A navigation system steers the head vehicle based on a continuously known position and attitude. Navigation data for the lead vehicle is broadcast to a following collection vehicle. A navigation system in the following vehicle processes the lead vehicle navigation data to determine a relative position and attitude. The navigation system in the following vehicle generates steering and speed commands based on the relative position and attitude to automatically drive to a designated target position alongside the lead vehicle. In one example, an artificial oscillation is induced into the target position to more evenly distribute material in the following vehicle.
    Type: Application
    Filed: November 10, 2016
    Publication date: May 25, 2017
    Applicant: AGJUNCTION LLC
    Inventors: Andreas F. RAMM, Eran D.B. Medagoda, Timothy J. Sullivan, Tri M. Dang
  • Publication number: 20170146667
    Abstract: A calibration scheme measures roll, pitch, and yaw and other speeds and accelerations during a series of vehicle maneuvers. Based on the measurements, the calibration scheme calculates inertial sensor misalignments. The calibration scheme also calculates offsets of the inertial sensors and GPS antennas from a vehicle control point. The calibration scheme can also estimate other calibration parameters, such as minimum vehicle radii and nearest orthogonal orientation. Automated sensor calibration reduces the amount of operator input used when calibrating sensor parameters. Automatic sensor calibration also allows the operator to install an electronic control unit (ECU) in any convenient orientation (roll, pitch and yaw), removing the need for the ECU to be installed in a restrictive orthogonal configuration. The calibration scheme may remove dependencies on a heading filter and steering interfaces by calculating sensor parameters based on raw sensor measurements taken during the vehicle maneuvers.
    Type: Application
    Filed: November 14, 2016
    Publication date: May 25, 2017
    Applicant: AGJUNCTION LLC
    Inventors: Eran D.B. MEDAGODA, Andreas F. RAMM, Tri M. DANG, Adam BOSELEY
  • Publication number: 20170144702
    Abstract: A guidance system may derive a K-turn path when a vehicle reaches an end of a first way line in a field. The guidance system may send the K-turn path to a steering controller to turn the vehicle around in a headland area to the beginning of a second way-line in the field. A first segment of the K-turn path may turn the vehicle along a first path in a forward direction and a second segment of the K-turn path may turn the vehicle along a second path in a reverse direction. A third segment of the K-turn path may turn the vehicle along a third path in the forward direction to a starting location of the second way-line. The K-turn path uses less area than other types of turns reducing the amount of headland used for turning around the vehicle.
    Type: Application
    Filed: November 10, 2016
    Publication date: May 25, 2017
    Applicant: AGJUNCTION LLC
    Inventors: Tri M. DANG, Timothy J. SULLIVAN
  • Publication number: 20160334804
    Abstract: A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. Relative orientations and attitudes between motive and working components can be determined using optical sensors and cameras. The system can also be used to guide multiple vehicles in relation to each other.
    Type: Application
    Filed: May 31, 2016
    Publication date: November 17, 2016
    Applicant: AgJunction LLC
    Inventors: Mark R. Webber, Keith R. Jones, John A. McClure, Andre C. Roberge, Walter J. Feller, Michael L. Whitehead
  • Publication number: 20160252909
    Abstract: A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine-vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. Relative orientations and attitudes between motive and working components can be determined using optical sensors and cameras. The system can also be used to guide multiple vehicles in relation to each other.
    Type: Application
    Filed: May 11, 2016
    Publication date: September 1, 2016
    Applicant: AgJunction LLC
    Inventors: Mark R. WEBBER, Keith R. Jones, John A. McClure, Andre C. Roberge, Walter J. Feller, Michael L. Whitehead
  • Publication number: 20160205864
    Abstract: A global navigation satellite system (GNSS) based control system is provided for positioning a working component relative to a work surface, such as an agricultural spray boom over a crop field. Inertial measurement unit (IMU) sensors, such as accelerometers and gyroscopes, are mounted on the working component and provide positioning signals to a control processor. A method of positioning a working component relative to a work surface using GNSS-based positioning signals is also disclosed. Further disclosed is a work order management system and method, which can be configured for controlling the operation of multiple vehicles, such as agricultural sprayers each equipped with GNSS-based spray boom height control subsystems. The sprayers can be remotely located from each other on multiple crop fields, and can utilize GNSS-based, field-specific terrain models for controlling their spraying operations.
    Type: Application
    Filed: March 29, 2016
    Publication date: July 21, 2016
    Applicant: AgJunction LLC
    Inventors: Joshua M. Gattis, Steven A. Koch, Mark W. Anderson
  • Patent number: 9389615
    Abstract: A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. Relative orientations and attitudes between motive and working components can be determined using optical sensors and cameras. The system can also be used to guide multiple vehicles in relation to each other.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: July 12, 2016
    Assignee: AGJUNCTION LLC
    Inventors: Mark R. Webber, Keith R. Jones, John A. McClure, André C. Roberge, Walter J. Feller, Michael L. Whitehead
  • Publication number: 20160154108
    Abstract: A DGNSS-based guidance system, wherein a rover receiver first utilizes data from a master base station transceiver, a DGNSS reference network, or some other differential source to compute a differentially corrected location to establish a reference DGNSS relationship. Using this location and data observed only at the rover, the rover computes an internal set of differential corrections, which set is stored in computer memory, updated as necessary, and applied in future times to correct observations taken by the rover. As the rover enters into areas of other base station receiver reference networks, the rover transceiver will send positional information it receives from the master base station to the new, secondary base station. The secondary base station then calibrates its own reference information using information sent from the original master base station.
    Type: Application
    Filed: February 5, 2016
    Publication date: June 2, 2016
    Applicant: AgJunction LLC
    Inventor: John A. McClure
  • Patent number: 9255992
    Abstract: A DGNSS-based guidance system, wherein a rover receiver first utilizes data from a master base station transceiver, a DGNSS reference network, or some other differential source to compute a differentially corrected location to establish a reference DGNSS relationship. Using this location and data observed only at the rover, the rover computes an internal set of differential corrections, which set is stored in computer memory, updated as necessary, and applied in future times to correct observations taken by the rover. As the rover enters into areas of other base station receiver reference networks, the rover transceiver will send positional information it receives from the master base station to the new, secondary base station. The secondary base station then calibrates its own reference information using information sent from the original master base station.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: February 9, 2016
    Assignee: AgJunction, LLC
    Inventor: John A. McClure