Abstract: A glazing method for improving abrasion resistance using a heated smooth roll to melt the lower-melting-point portion of bicomponent fibers as the spunbond web passes over the heated smooth roll. Because there is no external pressure exerted in a nip by an opposing second roller, as in calendering, the outer surface of the web which does not contact the heated smooth roll remains essentially unchanged and the nonwoven fabric exhibits no compression as a result of the glazing process. The roll temperature and dwell time (roll diameter, wrap angle and line speed) are controlled for the purpose of surface treating only one side of the nonwoven fabric to improve abrasion resistance while allowing the air permeability and web thickness to remain essentially unchanged.
Abstract: A method for manufacturing a filtration media with improved filtration, strength, tear resistance and air permeability in the form of a relatively thin and lightweight wet-laid fibrous web that has a wet Mullen ratio of 20% to 90% to ensure that the media is flexible enough to be formed into a fluted structure, and strong enough to retain the fluted structure when would into a roll and to permit further processing.
Abstract: A single-layer fibrous substrate comprising, by dry weight compared with the weight of the substrate: between 39.9 and 87.9% natural fibers refined to above 50° SR; between 12 and 60% nanofibrillar polysaccharide; and between 0.1 and 4% of at least one retention agent.
Abstract: A filtration media with improved filtration, strength, tear resistance and air permeability in the form of a relatively thin and lightweight wet-laid fibrous web that has a wet Mullen ratio of 60% to 80% to ensure that the media is flexible enough to be formed into a fluted structure, and strong enough to retain the fluted structure when wound into a roll and to permit further processing without the media becoming too brittle. The filtration media comprises a blend of cellulose and synthetic fibers having a weight percent of 81 wt % to 87 wt % of a weight of the media and a resin binder having a weight of 13 wt % to 19 wt % (preferably about 16 wt %) of the weight of the media.
Abstract: Nonwoven substrate for joint tape containing vegetable fibers from softwood or hardwood pulp, possibly with synthetic fibers and/or possibly glass fibers, characterized in that it also contains flax fibers obtained by retting. Joint tape including the substrate.
Abstract: A coalescence media for separation of water-hydrocarbon emulsions, the coalescence media comprising an emulsion-contacting sheet formed as a single dry layer from a wet-laid process using a homogenously distributed, wet-laid furnish of (a) a mixture of fibrous components of (a1) at least one type of a first group of cellulose and/or cellulose-based fibers, and (a2) at least one type of a second group of fibers selected from the group consisting of fibrillated fibers and glass microfibers, and (b) at least one non-fibrous component selected from the group consisting of (b1) a dry strength additive, and (b2) a wet strength additive. The fibrous components of the coalescence media constitute at least about 70% of the coalescence media, and includes a pore structure sufficient to coalesce water droplets having a droplet size of <3.5 ?m in biodiesel blends or in surfactant stabilized water-hydrocarbon emulsions.
Abstract: A cellulose fiber-based support of which at least one surface is coated with a layer containing at least one water-soluble polymer having hydroxyl functions, at least some of which have been reacted beforehand with at least one organic molecule that contains at least one vinylic function, characterized in that said organic molecule also has an aldehyde function. Method for production thereof.
Type:
Grant
Filed:
January 19, 2011
Date of Patent:
October 28, 2014
Assignee:
Ahlstrom Corporation
Inventors:
Menno Dufour, Diego Fantini, Gilles Gauthier
Abstract: A coalescence media for separation of water-hydrocarbon emulsions comprises an emulsion-contacting sheet formed of: (a) at least one component of the group consisting of natural fibers, cellulose fibers, natural-based fibers, and cellulose-based fibers, at least one component of the group consisting of high-surface-area fibrillated fibers, surface-area-enhancing synthetic material, glass microfibers, and nanoceramic functionalized fibers; and (c) at least one component of the group consisting of a dry strength additive, and a wet strength additive, wherein the fibrous components of the media constitute at least about 70% of the media. In preferred embodiments, the coalescence media comprises kraft fibers, fibrillated lyocell fibers, glass microfibers or nanoceramic functionalized fibers, a wet strength additive, and a dry strength additive. Preferably, the coalescence media is formed as a single, self-supporting layer from a wet-laid process using a homogenously distributed, wet-laid furnish.
Abstract: Separation media, separation modules and methods are provided for separating water from a water and hydrocarbon emulsion and include a fibrous nonwoven coalescence layer for receiving the water and hydrocarbon emulsion and coalescing the water present therein as a discontinuous phase to achieve coalesced water droplets having a size of 1 mm or greater, and a fibrous nonwoven drop retention layer downstream of the coalescence layer having a high BET surface area of at least 90 m2/g or greater sufficient to retain the size of the coalesced water droplets to allow separation thereof from the hydrocarbon.
Type:
Grant
Filed:
April 12, 2012
Date of Patent:
June 10, 2014
Assignee:
Ahlstrom Corporation
Inventors:
Christine M. Stanfel, Farina Diani Pangestu
Abstract: Methods for manufacturing nonwovens and nonwovens obtained by such methods are provided. Particularly, nonwovens are provided with improved tactile and absorbent characteristics, which make them suitable for use in the field of surface cleaning, personal hygiene, or formation of garments. The methods are based on the use of lobed spunbonded filaments which have been treated by a thickening apparatus.
Abstract: A glazing method for improving abrasion resistance using a heated smooth roll to melt the lower-melting-point portion of bicomponent fibers as the spunbond web passes over the heated smooth roll. Because there is no external pressure exerted in a nip by an opposing second roller, as in calendering, the outer surface of the web which does not contact the heated smooth roll remains essentially unchanged and the nonwoven fabric exhibits no compression as a result of the glazing process. The roll temperature and dwell time (roll diameter, wrap angle and line speed) are controlled for the purpose of surface treating only one side of the nonwoven fabric to improve abrasion resistance while allowing the air permeability and web thickness to remain essentially unchanged.
Abstract: The present invention relates to a method for manufacturing nonwoven and nonwoven obtainable by said method. Particularly, the invention relates to a nonwoven provided with improved tactile and absorbent characteristics, which make it suitable for use in the field of surface cleaning, personal hygiene, or formation of garments. The method is based on the use of lobed spunbonded filaments which have been treated by means of thickening means.
Abstract: Sterilizable and printable, wet-laid non-woven substrate exhibiting high-strength and temperature resistance above 140° C., providing sufficient airflow to relieve pressure in a package formed from the substrate during sterilization, providing a significant barrier to penetration by bacteria and debris, and which is sealable to itself and to thermoplastic films, comprises blends of nanofibrillated lyocell fibers, microfibers, fibers having a flat, rectangular cross-section and binder fibers.
Abstract: Separation media, separation modules and methods are provided for separating water from a water and hydrocarbon emulsion and include a fibrous nonwoven coalescence layer for receiving the water and hydrocarbon emulsion and coalescing the water present therein as a discontinuous phase to achieve coalesced water droplets having a size of 1 mm or greater, and a fibrous nonwoven drop retention layer downstream of the coalescence layer having a high BET surface area of at least 90 m2/g or greater sufficient to retain the size of the coalesced water droplets to allow separation thereof from the hydrocarbon.
Type:
Grant
Filed:
April 30, 2012
Date of Patent:
September 3, 2013
Assignee:
Ahlstrom Corporation
Inventors:
Christine M. Stanfel, Farina Diani Pangestu
Abstract: The present invention relates to a process and equipment for manufacturing a non-woven fabric provided with optimum softness and resistance characteristics, as well as attractive appearance. Particularly, the invention relates to a process and equipment for manufacturing non-woven fabrics (NWF) both of the spun-lace type, either spunbonded and carded (hydro-entangled NWF), and the non-woven fabrics thereby obtained by means of hydro-embossing and thermo-embossing treatments.
Abstract: Disclosed herein is a reflectively patterned, fibrous, sided nonwoven material comprising a first set of fibers hydraulically needled with a web of a second set of fibers, the first set of fibers primarily containing short fibers and the second set of fibers primarily containing one of (a) substantially continuous filaments, (b) long fibers, and (c) short fibers having an average fiber length at least twice the average fiber length of the first set of fibers. The material has a first surface predominately comprising the first set of fibers and an opposing second surface predominately comprising the second set of fibers. A method of patterning a sided nonwoven web and a reflectively patterned, sided nonwoven material also are disclosed.
Abstract: Fibrous support intended to be impregnated, the fibers of which are formed 100% of cellulose fibers, characterized in that it presents, before creping or embossing, a wet traction strength of over 2.4 N/15 mm in the cross-machine direction, a water absorption capacity of at least 300% and contains less than 2% dry wet strength 10 agent in comparison with the dry weight of the fibers.
Abstract: Disclosed herein is a reflectively patterned, fibrous, sided nonwoven material comprising a first set of fibers hydraulically needled with a web of a second set of fibers, the first set of fibers primarily containing short fibers and the second set of fibers primarily containing one of (a) substantially continuous filaments, (b) long fibers, and (c) short fibers having an average fiber length at least twice the average fiber length of the first set of fibers. The material has a first surface predominately comprising the first set of fibers and an opposing second surface predominately comprising the second set of fibers. A method of patterning a sided nonwoven web and a reflectively patterned, sided nonwoven material also are disclosed.
Abstract: This specification is generally related to reinforced, parchmented paper, composite, reinforced parchmented paper and methods of manufacture thereof. The reinforced, parchmented paper may be used to form a sausage casing.
Type:
Grant
Filed:
January 10, 2008
Date of Patent:
November 27, 2012
Assignee:
Ahlstrom Corporation
Inventors:
Michael Dennis Black, Alan Wightman, Noël Cartier, Raymond Volpe, Julien Bras, Carlos Vaca-Garcia