Patents Assigned to Air Liquide Electronics U.S. LP
  • Patent number: 11430663
    Abstract: A method for etching silicon-containing films is disclosed. The method includes the steps of introducing a vapor of an iodine-containing etching compound into a reaction chamber containing a silicon-containing film on a substrate, wherein the iodine-containing etching compound has the formula CaHxFyIz, wherein a=1-3, x=0-6, y=1-7, z=1-2, x+y+z=4 when a=1, x+y+z=4 or 6 when a=2, and x+y+z=6 or 8 when a=3; introducing an inert gas into the reaction chamber; and activating a plasma to produce an activated iodine-containing etching compound capable of etching the silicon-containing film from the substrate.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: August 30, 2022
    Assignees: American Air Liquide, Inc., L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude, Air Liquide Electronics U.S. LP
    Inventors: Vijay Surla, Rahul Gupta, Hui Sun, Venkateswara R. Pallem, Nathan Stafford, Fabrizio Marchegiani, Vincent M. Omarjee, James Royer
  • Patent number: 11024513
    Abstract: Methods for minimizing sidewall damage during low k etch processes are disclosed. The methods etch the low k layers f using the plasma activated vapor of an organofluorine compound having a formula selected from the group consisting of N?C—R; (N@C—)—(R)—(—C?N); Rx[-C?N(Rz)]y; and R(3-a)-N—Ha, wherein a=1-2, x=1-2, y=1-2, z=0-1, x+z=1-3, and each R independently has the formula HaFbCc with a=0-11, b=0-11, and c=0-5.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: June 1, 2021
    Assignee: Air Liquide Electronics U.S. LP
    Inventors: Chih-Yu Hsu, Peng Shen, Nathan Stafford
  • Patent number: 10739795
    Abstract: Methods and systems for high precision, continuous blending of mixtures, and particularly mixtures having at least two distinct chemical components, are disclosed. More particularly, the disclosed methods and systems provide high precision, continuous blending of buffered oxide etch mixtures containing water, ammonium fluoride, and hydrofluoric acid.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: August 11, 2020
    Assignee: Air Liquide Electronics U.S. LP
    Inventor: Kevin T. O'Dougherty
  • Patent number: 10720335
    Abstract: Replacement chemistries for the cC4F8 passivation gas in the Bosch etch process and processes for using the same are disclosed. These chemistries have the formula CxHyFz, with 1?x<7, 1?y?13, and 1?z?13. The replacement chemistries may reduce RIE lag associated with deep silicon aperture etching.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: July 21, 2020
    Assignees: American Air Liquide, Inc., L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude, Air Liquide Electronics U.S. LP
    Inventors: Peng Shen, Christian Dussarrat, Curtis Anderson, Rahul Gupta, Vincent M. Omarjee, Nathan Stafford
  • Patent number: 10607850
    Abstract: A method for etching silicon-containing films is disclosed. The method includes the steps of introducing a vapor of an iodine-containing etching compound into a reaction chamber containing a silicon-containing film on a substrate, wherein the iodine-containing etching compound has the formula CaHxFyIz, wherein a=1-3, x=0-6, y=1-7, z=1-2, x+y+z=4 when a=1, x+y+z=4 or 6 when a=2, and x+y+z=6 or 8 when a=3; introducing an inert gas into the reaction chamber; and activating a plasma to produce an activated iodine-containing etching compound capable of etching the silicon-containing film from the substrate.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: March 31, 2020
    Assignees: American Air Liquide, Inc., Air Liquide Electronics U.S. LP, L'Air Liquide, SociétéAnonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Vijay Surla, Rahul Gupta, Hui Sun, Venkateswara R. Pallem, Nathan Stafford, Fabrizio Marchegiani, Vincent M. Omarjee, James Royer
  • Patent number: 10529581
    Abstract: Methods for isotropic etching at least a portion of a silicon-containing layer on a sidewall of high-aspect-ratio (HAR) apertures formed on a substrate in a reaction chamber are disclosed. The HAR aperture formed by plasma etching a stack of alternating layers of a first silicon-containing layer and a second silicon-containing layer, the second silicon-containing layer is different from the first silicon-containing layer. The method comprising the steps of: a) introducing a fluorine containing etching gas selected from the group consisting of nitrosyl fluoride (FNO), trifluoroamine oxide (F3NO), nitryl fluoride (FNO2) and combinations thereof into the reaction chamber; and b) removing at least a portion of the second silicon-containing layers by selectively etching the second silicon-containing layers versus the first silicon-containing layers with the fluorine containing etching gas to produce recesses between the first silicon-containing layers on the sidewall of the HAR aperture.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: January 7, 2020
    Assignees: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude, Air Liquide Electronics U.S. LP
    Inventors: Chih-Yu Hsu, Peng Shen, Takashi Teramoto, Nathan Stafford, Jiro Yokota
  • Patent number: 10371566
    Abstract: Liquid tank measuring systems that weigh/measure the amount of liquid in a fixed tank/vessel are disclosed. Also disclosed are methods that provide load cell failure detection of the liquid tank measuring system and the ability to continue operations post load cell failure detection.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: August 6, 2019
    Assignee: Air Liquide Electronics U.S. LP
    Inventors: Bryan L. Smith, Mark Stang, Mike Miano, Billy W. Luetkahans, Daniel J. Fuchs, Matt Kelly, Bryon Perkins, Justin Gauthier, Kevin T. O'Dougherty
  • Patent number: 10370170
    Abstract: A packing article for the storage and/or transport of items and materials requiring high levels of cleanliness is described. Methods of making and using the packaging article are also described. The packaging article may be used to store or transport, for example, advanced optical components, or materials and components used in the manufacturing of microelectronic devices or optical components. A method of making the packaging article includes contacting the packaging article with organic solvent(s) and acidic solution(s) and rinsing with ultrapure water. Interior cleanliness levels for various contaminants, such as, metals, anionic materials, organic compounds, and particles may be verified and the packaging articles may be labeled and sorted according to cleanliness level.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: August 6, 2019
    Assignee: Air Liquide Electronics U.S. LP
    Inventors: Fuhe Li, James Scott Anderson
  • Patent number: 10103031
    Abstract: Replacement chemistries for the cC4F8 passivation gas in the Bosch etch process and processes for using the same are disclosed. These chemistries have the formula CxHyFz, with 1?x<7, 1?y?13, and 1?z?13. The replacement chemistries may reduce RIE lag associated with deep silicon aperture etching.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: October 16, 2018
    Assignees: L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Georges Claude, American Air Liquide, Inc., Air Liquide Electronics U.S. LP
    Inventors: Peng Shen, Christian Dussarrat, Curtis Anderson, Rahul Gupta, Vincent M. Omarjee, Nathan Stafford
  • Patent number: 9892932
    Abstract: Replacement chemistries for the cC4F8 passivation gas in the Bosch etch process and processes for using the same are disclosed. These chemistries have the formula CxHyFz, with 1 ?x<7, 1?y?13, and 1?z?13. The replacement chemistries may reduce RIE lag associated with deep silicon aperture etching.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: February 13, 2018
    Assignees: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude, American Air Liquide, Inc., Air Liquide Electronics U.S. LP
    Inventors: Peng Shen, Christian Dussarrat, Curtis Anderson, Rahul Gupta, Vincent M. Omarjee, Nathan Stafford
  • Patent number: 9517873
    Abstract: A packing article for the storage and/or transport of items and materials requiring high levels of cleanliness is described. Methods of making and using the packaging article are also described. The packaging article may be used to store or transport, for example, advanced optical components, or materials and components used in the manufacturing of microelectronic devices or optical components. A method of making the packaging article includes contacting the packaging article with organic solvent(s) and acidic solution(s) and rinsing with ultrapure water. Interior cleanliness levels for various contaminants, such as, metals, anionic materials, organic compounds, and particles may be verified and the packaging articles may be labeled and sorted according to cleanliness level.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: December 13, 2016
    Assignee: Air Liquide Electronics U.S. LP
    Inventors: Fuhe Li, James Scott Anderson
  • Patent number: 9073952
    Abstract: Si(OEt)2[CH2—Si(OEt)3]2 compounds are synthesized by reacting a Grignard reagent having the formula Si(OEt)3(CH2MgCl) with a quenching agent having the formula Si(OEt)2Cl2.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: July 7, 2015
    Assignees: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude, American Air Liquide, Inc., Air Liquide Electronics U.S. LP
    Inventors: Zhiwen Wan, Ziyun Wang, Ashutosh Misra, Jean-Marc Girard, Andrey V. Korolev
  • Patent number: 8859797
    Abstract: A SiH[CH2—Si(OEt)3]3 carbosilane compound is synthesized by reacting a Grignard reagent having the formula Si(OEt)3(CH2MgCl) with a quenching agent having the formula SiHCl3.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: October 14, 2014
    Assignees: Air Liquide Electronics U.S. LP, L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude, American Air Liquide, Inc.
    Inventors: Zhiwen Wan, Ziyun Wang, Ashulosh Misra, Jean-Marc Girard, Claudia Fafard, Andrey V. Korolev
  • Patent number: 8852460
    Abstract: Methods and compositions for the deposition of a film on a substrate. In general, the disclosed compositions and methods utilize a precursor containing calcium or strontium.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: October 7, 2014
    Assignees: Air Liquide Electronics U.S. LP, American Air Liquide, Inc.
    Inventors: Olivier Letessier, Christian Dussarrat, Benjamin J. Feist, Vincent M. Omarjee
  • Patent number: 8702297
    Abstract: Methods and systems for chemical management. In one embodiment, a blender is coupled to a processing system and configured to supply an appropriate solution or solutions to the system. Solutions provided by the blender are then reclaimed from the system and subsequently reintroduced for reuse. The blender may be operated to control the concentrations of various constituents in the solution prior to the solution being reintroduced to the system for reuse. Some chemicals introduced to the system may be temperature controlled. A back end vacuum pump subsystem separates gases from liquids as part of a waste management system.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: April 22, 2014
    Assignees: Air Liquide Electronics U.S. LP, Air Liquide Electronics Systems
    Inventors: Karl J. Urquhart, Georges Guarneri, Jean-Louis Marc, Norbert Fanjat, Laurent Langellier, Christophe Colin
  • Patent number: 8591095
    Abstract: Systems for controlling fluids in semiconductor processing systems are disclosed. The disclosed systems comprise a chemical blender, a reclaim tank, a dispense system, two chemical monitors, a controller, and a reclamation line in fluid communication with an outlet of the process station and coupled to the reclaim tank. The reclaim tank mixes solution from the chemical blender and the reclamation line. One of the two chemical monitors the mixed solution downstream from the dispense system. The controller is configured to flow the mixed solution to the process station upon determination by the first chemical monitor that at least one chemical compound in the mixed solution is at a predetermined concentration. The second chemical monitor monitors the reclaimed portion of the mixed solution to determine whether the at least one chemical compound is at a predetermined concentration before being reintroduced into the reclaim tank.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: November 26, 2013
    Assignee: Air Liquide Electronics U.S. LP
    Inventors: Norbert Fanjat, Karl J. Urquart, Axel Soulet, Laurent Langellier
  • Publication number: 20130112276
    Abstract: Methods and systems for chemical management. In one embodiment, a blender is coupled to a processing system and configured to supply an appropriate solution or solutions to the system. Solutions provided by the blender are then reclaimed from the system and subsequently reintroduced for reuse. The blender may be operated to control the concentrations of various constituents in the solution prior to the solution being reintroduced to the system for reuse. Some chemicals introduced to the system may be temperature controlled. A back end vacuum pump subsystem separates gases from liquids as part of a waste management system.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 9, 2013
    Applicants: Air Liquide Electronics Systems, Air Liquide Electronics U.S. LP
    Inventors: Air Liquide Electronics U.S. LP, Air Liquide Electronics Systems
  • Patent number: 8435428
    Abstract: Methods for forming a film on a substrate in a semiconductor manufacturing process. A reaction chamber a substrate in the chamber are provided. A ruthenium based precursor, which includes ruthenium tetroxide dissolved in a mixture of at least two non-flammable fluorinated solvents, is provided and a ruthenium containing film is produced on the substrate.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: May 7, 2013
    Assignee: Air Liquide Electronics U.S. LP
    Inventors: Bin Xia, Ashutosh Misra
  • Publication number: 20130028043
    Abstract: Systems for controlling fluids in semiconductor processing systems are disclosed. The disclosed systems comprise a chemical blender, a reclaim tank, a dispense system, two chemical monitors, a controller, and a reclamation line in fluid communication with an outlet of the process station and coupled to the reclaim tank. The reclaim tank mixes solution from the chemical blender and the reclamation line. One of the two chemical monitors the mixed solution downstream from the dispense system. The controller is configured to flow the mixed solution to the process station upon determination by the first chemical monitor that at least one chemical compound in the mixed solution is at a predetermined concentration. The second chemical monitor monitors the reclaimed portion of the mixed solution to determine whether the at least one chemical compound is at a predetermined concentration before being reintroduced into the reclaim tank.
    Type: Application
    Filed: July 31, 2012
    Publication date: January 31, 2013
    Applicant: Air Liquide Electronics U.S. LP
    Inventors: Norbert FANJAT, Karl J. URQUART, Axel SOULET, Laurent LANGELLIER
  • Patent number: 8361199
    Abstract: Methods of purifying H2Se by removing H2S and/or H2O are disclosed. The amount of H2S in the H2Se-containing gas is reduced below 10 ppmv by passing the H2Se-containing gas through an AW-500 molecular sieve. H2S and H2O are removed by passing H2Se through a 4 A molecular sieve and subsequently passing H2Se through an AW-500 molecular sieve.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: January 29, 2013
    Assignees: Air Liquide Electronics U.S. LP, American Air Liquide, Inc.
    Inventors: Nathan Stafford, Richard J. Udischas