Patents Assigned to Air Liquide Process and Construction, Inc.
  • Patent number: 9097459
    Abstract: An improved process for producing elevated pressure nitrogen including providing an air separation unit with at least two columns, a low pressure (LP) column and a medium pressure (MP) column. Also including extracting a nitrogen stream from the MP column and extracting a rich liquid from the bottom of the MP column, and providing at least a portion of the rich liquid stream to a first vaporizer. Also including introducing a portion of the nitrogen stream into the first vaporizer, thereby producing a boil-off gas, and warming at least a portion of the nitrogen stream in a heat exchanger, thereby producing a product nitrogen stream. Also including warming at least a portion of the boil-off gas in the heat exchanger, thereby producing warm. intermediate stream, expanding the warm intermediate stream in an expander, thereby producing a quantity of work, and a low pressure intermediate stream, and introducing the low pressure intermediate stream into the LP column.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: August 4, 2015
    Assignee: Air Liquide Process & Construction, Inc.
    Inventor: Paul Musicus
  • Patent number: 9039934
    Abstract: A method for producing a chemical reaction is provided. This method includes providing at least two helical tubes, wherein the helical tubes comprise: a first axis and a second axis; wherein the first axis and the second axis are normal to each other; a cross-sectional shape of a predetermined contour; and an inlet end and an outlet end. The method includes reforming a first gas stream and a second gas stream into a third gas stream in the presence of a catalyst. The method includes surrounding a heat source with the helical tubes are, and operating the tube with an average catalyst temperature of above 500 F. An apparatus for producing a chemical reaction is also provided.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: May 26, 2015
    Assignee: Air Liquide Process & Construction, Inc.
    Inventor: Albertus J. Ekelmans
  • Publication number: 20140165648
    Abstract: A method for purifying an argon stream is provided. The method includes pretreating an argon waste stream to remove impurities to provide a pre-treated argon waste stream having argon, nitrogen, and hydrogen; cooling the argon waste stream to create a cold feed stream; and condensing the cold feed stream to create a liquid feed stream. The liquid feed stream is fed to the cryogenic distillation column to create a bottoms argon product stream and a gas waste stream. The bottoms argon product stream travels to an expansion device to provide a cooled bottoms argon product stream, which can optionally be combined with an argon lift stream downstream of the expansion device. The combined argon lift stream and cooled bottoms argon product stream are fed to the overhead condenser and vaporized to create a purified vapor phase argon stream.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: Air Liquide Process & Construction, Inc.
    Inventors: Bao HA, Daniel Gary, Purushottam V. Shanbhag
  • Publication number: 20140165649
    Abstract: An argon purification system is provided which includes a cryogenic heat exchanger, a cryogenic distillation column. The cryogenic heat exchanger is configured to remove heat from a pre-treated argon waste stream to create a cold feed stream. The cryogenic distillation column includes packing, a reboiler, and an overhead condenser, as well as an upper portion and a lower portion and is configured to receive a liquid feed stream and to produce a bottoms argon product stream and a gas waste stream. The reboiler is positioned in the lower portion of the cryogenic distillation column and is configured to condense the cold feed stream to produce the liquid feed stream. The condenser is positioned in the upper portion of the cryogenic distillation column and is configured to heat the bottoms argon product stream such that the bottoms argon product stream evaporates to a purified vapor phase argon stream.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: Air Liquide Process & Construction, Inc.
    Inventors: Bao HA, Daniel Gary, Purushottam V. Shanbhag
  • Publication number: 20140158206
    Abstract: An improved vent ice prevention apparatus including a first conduit, a second conduit, and a third conduit, wherein the second conduit concentrically surrounds the first conduit thereby forming an annular region between the two conduits. The third conduit is in fluid communication with said annular region. The first conduit is configured to receive a cold vent stream, and the third conduit is configured to receive a dry purge stream and introduce the dry purge stream into the annular region in order to prevent ice formation.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: Air Liquide Process & Construction, Inc.
    Inventors: Bruce M. ELLIS, Minh Huy Pham
  • Publication number: 20130340983
    Abstract: An improved vent ice prevention method including introducing a cold vent stream into a first conduit, wherein at least a portion of the first conduit is concentric with a second conduit, thereby producing an annular region, introducing a hot vent stream into a third conduit, and wherein the third conduit is in fluid connection with the annular region, thereby preventing the first conduit or the second conduit from forming ice. The cold vent stream is a cold compressor seal vent stream. The hot vent stream is a warm compressor seal vent stream.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Applicant: Air Liquide Process & Construction, Inc.
    Inventors: Bruce M. Ellis, Huy Minh Pham
  • Publication number: 20130042647
    Abstract: The present invention is an improved process for producing elevated pressure nitrogen. This method includes providing an air separation unit with at least two columns, an LP column and an MP column, and cooling a compressed feed air stream in a heat exchanger, then expanding the resulting cooled feed air stream in an expander, thereby producing a quantity of work and a cooled inlet air stream, feeding the cooled inlet air stream into the LP column. Then extracting a nitrogen stream from the MP column, and warming a first portion of the nitrogen stream in the heat exchanger, thereby producing a product nitrogen stream. Then compressing a second portion of the nitrogen stream in a compressor, thereby producing medium pressure nitrogen stream, and introducing the medium pressure nitrogen stream into an LP column vaporizer. Then extracting a second nitrogen stream from the LP column, and cooling the second nitrogen stream in a condenser thereby producing a liquid nitrogen stream.
    Type: Application
    Filed: August 18, 2011
    Publication date: February 21, 2013
    Applicant: Air Liquide Process & Construction, Inc.
    Inventor: Paul Musicus
  • Publication number: 20130036723
    Abstract: An integrated oxy-combustion power generation process is provided. This process includes providing an air separation unit for producing at least an oxygen-enriched stream, providing a carbon dioxide recycle stream, which is combined with the oxygen-enriched stream thereby producing a synthetic air stream, providing a gas turbine comprising a gas inlet , a combustor, and a gas outlet, wherein the synthetic air stream is introduced into the gas inlet, providing a fuel stream to the combustor, thereby producing a power output, and a hot exhaust gas stream, which exits the gas outlet, introducing the exhaust gas stream, along with a boiler feed water stream, into a heat recovery steam generator, thereby producing a steam stream and a cooled exhaust gas stream, and separating the cooled exhaust gas stream into an enriched carbon dioxide product stream and the carbon dioxide recycle stream.
    Type: Application
    Filed: November 1, 2011
    Publication date: February 14, 2013
    Applicant: Air Liquide Process and Construction Inc.
    Inventor: Craig LA FORCE
  • Patent number: 8361405
    Abstract: A reactor vessel for subjecting a first gas and a second gas to a chemical reaction to produce a third gas is provided. The reactor vessel includes a catalyst bed, an inlet for receiving the first gas and the second gas, and a first outlet for discharging the third gas. The first outlet includes a selective microporous conduit to separate the third gas from products of incomplete reaction or unreacted first gas and unreacted second gas. A second outlet for discharging one or more of the following: unseparated third gas is also included in this invention. The products of incomplete reaction, unreacted first gas, or unreacted second gas are removed from the system. At least one helical tube is disposed within the reactor vessel and in direct contact with the catalyst bed. The helical tube has an inlet end communicating with a hot gas source, and an outlet end exhausting cooled gas. Indirect heat exchange between the helical tube and the first and second gas, promoted by the catalyst, generates the third gas.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: January 29, 2013
    Assignee: Air Liquide Process & Construction, Inc.
    Inventor: Albertus J. Ekelmans
  • Publication number: 20130000351
    Abstract: An improved process for producing elevated pressure nitrogen including providing an air separation unit with at least two columns. The process includes extracting a first nitrogen stream from the MP column, warming a first portion of the first nitrogen stream in a heat exchanger, thereby producing a product nitrogen stream, and warming a second portion of the nitrogen stream in the heat exchanger, thereby producing warm nitrogen stream. Expanding the warm nitrogen stream in an expander, thereby producing a quantity of work, and a low pressure nitrogen stream and introducing the low pressure nitrogen stream into the LP column. Extracting a second nitrogen stream from the LP column, cooling the second nitrogen stream in condenser, thereby producing a liquid nitrogen stream.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 3, 2013
    Applicant: Air Liquide Process & Construction, Inc.
    Inventor: Paul Musicus
  • Patent number: 8268050
    Abstract: An improved process for the separation of carbon dioxide from the flue gas of an oxy-combustion power plant is provided. The flue gas is compressed, cleaned, cooled and dried. This clean, compressed dry flue gas is then further cooled, partially condensed and separated into liquid and vapor streams. The liquid streams, which contain a high concentration of carbon dioxide, are vaporized, compressed and exported to an end user. The vapor streams are heated and expanded, in order to extract useable energy. At least two expanders are used to extract this energy, with an intermediate warming step.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: September 18, 2012
    Assignee: Air Liquide Process & Construction, Inc.
    Inventor: Bao Ha
  • Publication number: 20120180988
    Abstract: A method to store and utilize thermal energy is provided. During a first phase, transferring heat from the heat relocation media to the lower temperature reservoir, transferring heat from the higher temperature stream to the heat relocation media, and transferring heat from the heat relocation media to the high temperature reservoir, thereby at least partially liquefying the higher temperature stream. During a second phase, transferring heat from the higher temperature reserve to the heat relocation media, transferring heat from the heat relocation media to the lower temperature stream, and transferring heat from the heat relocation media to the lower temperature reservoir, thereby at least partially vaporizing the lower temperature stream.
    Type: Application
    Filed: December 21, 2011
    Publication date: July 19, 2012
    Applicant: Air Liquide Process & Construction, Inc.
    Inventor: Craig S. LaForce
  • Publication number: 20120141364
    Abstract: A method for producing a chemical reaction is provided. This method includes providing at least two helical tubes, wherein the helical tubes comprise: a first axis and a second axis; wherein the first axis and the second axis are normal to each other; a cross-sectional shape of a predetermined contour; and an inlet end and an outlet end. The method includes reforming a first gas stream and a second gas stream into a third gas stream in the presence of a catalyst. The method includes surrounding a heat source with the helical tubes are, and operating the tube with an average catalyst temperature of above 500 F. An apparatus for producing a chemical reaction is also provided.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 7, 2012
    Applicant: Air Liquide Process and Construction Inc.
    Inventor: Albertus J. Ekelmans
  • Patent number: 8187363
    Abstract: A process for improving the thermodynamic efficiency of a hydrogen generation system is provided. This includes producing a syngas stream in a reformer, wherein the reformer has a combustion zone. This also includes introducing a syngas stream into a pressure swing adsorption unit, thereby producing a product hydrogen stream and a tail gas stream. This also includes heating the tail gas stream by indirect heat exchange with a heat source, thereby producing a heated tail gas stream; and introducing the heated tail gas stream into the combustion zone.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: May 29, 2012
    Assignee: Air Liquide Process & Construction, Inc.
    Inventor: Bhadra S. Grover
  • Patent number: 8137439
    Abstract: A process for the recovery of CO2 from a flue gas is provided. This process includes compressing a flue gas to a first pressure, cooling the flue gas to a first temperature, and drying flue gas by a drying means. This process includes adsorbing CO2 in a first adsorbent bed, wherein the first adsorbent bed is isothermally maintained by a first cooling means. The process includes pressurizing the first adsorbent bed to a second pressure with CO2 at a second temperature, wherein the second pressure is greater than the initial pressure, wherein the second temperature is greater than the initial temperature.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: March 20, 2012
    Assignee: Air Liquide Process & Construction, Inc.
    Inventor: Bhadra S. Grover
  • Patent number: 8136369
    Abstract: A hybrid system which utilizes high purity oxygen from a local pipeline, which is blended with low purity oxygen from an on-site or local cryogenic distillation system, thus resulting in a blend of intermediate quality which satisfies the needs of the customer. In order to offset the operating and energy costs associated with this fairly low profit margin intermediate purity oxygen, high purity nitrogen at high pressure is simultaneously exported to the local pipeline, thereby acting as a credit to the overall system.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: March 20, 2012
    Assignees: L'Air Liquide Societe Anonyme pour L'Etude, et l'Exploitation des Procedes Georges Claude, Air Liquide Process and Construction, Inc.
    Inventors: Jean-Renaud Brugerolle, Bao Ha
  • Patent number: 8124049
    Abstract: A high thermal efficiency process for hydrogen recovery is provided. The present invention includes combusting a first fuel stream to a reforming furnace, producing reforming heat and a hot exhaust stream. Then exchanging heat indirectly between the hot exhaust stream and a first feed water stream, producing a first steam stream. Then providing a hydrocarbon containing stream and a feed steam stream to the reforming furnace, utilizing the reforming heat and producing a hot raw syngas stream. Then exchanging heat indirectly between the hot raw syngas stream and second feedwater stream, producing a second steam stream and a cooled, raw syngas stream. Then introducing the cooled, raw syngas stream to a CO shift converter, producing a shifted syngas stream. Then introducing the shifted syngas stream into a pressure swing adsorption unit, producing a hydrogen product stream and a tail gas stream.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: February 28, 2012
    Assignee: Air Liquide Process & Construction, Inc.
    Inventor: Bhadra S. Grover
  • Publication number: 20120034138
    Abstract: A reactor vessel for subjecting a first gas and a second gas to a chemical reaction to produce a third gas is provided. The reactor vessel includes a catalyst bed, an inlet for receiving the first gas and the second gas, and a first outlet for discharging the third gas. The first outlet includes a selective microporous conduit to separate the third gas from products of incomplete reaction or unreacted first gas and unreacted second gas. A second outlet for discharging one or more of the following: unseparated third gas is also included in this invention. The products of incomplete reaction, unreacted first gas, or unreacted second gas are removed from the system. At least one helical tube is disposed within the reactor vessel and in direct contact with the catalyst bed. The helical tube has an inlet end communicating with a hot gas source, and an outlet end exhausting cooled gas. Indirect heat exchange between the helical tube and the first and second gas, promoted by the catalyst, generates the third gas.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 9, 2012
    Applicant: Air Liquide Process and Construction Inc.
    Inventor: Albertus J. Ekelmans
  • Patent number: 8100636
    Abstract: A seal gas recovery method including introducing a first seal gas stream to a first mechanically coupled booster/expander assembly, where the first booster/expander assembly includes a first booster, a first expander, a first shaft that mechanically couples the first booster and the first expander, and a first seal on the first shaft. The method further includes removing at least a portion of a first recoverable gas stream from the first seal, where the first recoverable gas stream includes at least a portion of a first process leak gas stream and at least a portion of a first seal gas vent stream. The method further includes introducing a second seal gas stream to a second expander assembly, where the expander assembly includes a second expander, a second shaft, and a second seal on the second shaft.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: January 24, 2012
    Assignee: Air Liquide Process & Construction, Inc.
    Inventor: Nathalie P. Schmitt
  • Patent number: 8080070
    Abstract: A method of hydrogenation of unsaturated hydrocarbons for syngas production is presented. A hydrogenation feed reactor stream is introduced into a hydrogenation reactor, thereby producing a reformer feed stream. The reformer feed stream is introduced into a reformer, thereby producing a crude syngas stream. The crude syngas stream is introduced into a water gas shift converter, thereby producing a hydrogen-rich stream. The hydrogen-rich stream is separated in a separation means, thereby producing a carbon dioxide-rich stream and a hydrogen product stream. At least a portion of the hydrogen product stream is combined with a refinery fuel gas stream, and a natural gas stream, to form the hydrogenation reactor feed stream.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: December 20, 2011
    Assignee: Air Liquide Process & Construction, Inc.
    Inventor: Bhadra S. Grover