Patents Assigned to Air Products and Chemicals, Inc.
  • Publication number: 20120045589
    Abstract: Volatile metal amidate metal complexes are exemplified by bis(N-(tert-butyl)ethylamidate)bis(ethylmethylamido) titanium; (N-(tert-butyl)(tert-butyl)amidate)tris(ethylmethylamido) titanium; bis(N-(tert-butyl)(tert-butyl)amidate)bis(dimethylamido) titanium and (N-(tert-butyl)(tert-butyl)amidate)tris(dimethylamido) titanium. The term “volatile” referes to any precursor of this invention having vapor pressure above 0.5 torr at temperature less than 200° C. Metal-containing film depositions using these metal amidate ligands are also described.
    Type: Application
    Filed: February 18, 2011
    Publication date: February 23, 2012
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Sergei Vladimirovich Ivanov, Wade Hampton Bailey, III, Xinjian Lei, Daniel P. Spence
  • Patent number: 8121984
    Abstract: A method for archiving biomedical data generated by a data collection device, includes the steps of automatically determining a data format in which the collection device is configured to store the biomedical data onto a computer-readable storage medium, based on the data format, extracting the biomedical data from the storage medium, and transmitting the extracted data to a database in which the extracted data is archived.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: February 21, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Robert S. Barbieri, Gregory Robert Glick, Michael Andrew Magent, Michael S. Toth
  • Patent number: 8119016
    Abstract: The present invention relates to a method for removing metal oxides from a substrate surface. In one particular embodiment, the method comprises: providing a substrate, a first, and a second electrode that reside within a target area; passing a gas mixture comprising a reducing gas through the target area; supplying an amount of energy to the first and/or the second electrode to generate electrons within the target area wherein at least a portion of the electrons attach to a portion of the reducing gas and form a negatively charged reducing gas; and contacting the substrate with the negatively charged reducing gas to reduce the metal oxides on the surface of the substrate.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: February 21, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Chun Christine Dong, Wayne Thomas McDermott, Alexander Schwarz, Gregory Khosrov Arslanian, Richard E. Patrick
  • Publication number: 20120040296
    Abstract: A method for combusting oil from an oil-containing layer floating on water as from an oil spill or well leak. In the method, an oxygen-containing gas is passed through a conduit, the oxygen-containing gas from the conduit is introduced proximate the oil-containing layer floating on water, and oil from the oil-containing layer is combusted with the oxygen-containing gas in the presence of a flame. The oxygen-containing gas is introduced with an oxygen molar flow rate sufficient to decrease the opacity of a smoke plume from the combusting oil.
    Type: Application
    Filed: August 10, 2010
    Publication date: February 16, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Paul M. Ashline, David Hon Sing Ying, Tunc Goruney, Xianming Jimmy Li, Leighta Maureen Johnson
  • Patent number: 8114193
    Abstract: An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: February 14, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: VanEric Edward Stein, Michael Francis Carolan, Christopher M. Chen, Phillip Andrew Armstrong, Harold W. Wahle, Theodore R. Ohrn, Kurt E. Kneidel, Keith Gerard Rackers, James Erik Blake, Shankar Nataraj, Rene Hendrik Elias Van Doorn, Merrill Anderson Wilson
  • Publication number: 20120035351
    Abstract: Sterically hindered imidazole ligands are described, along with their synthesis, which are capable of coordinating to Group 2 metals, such as: calcium, magnesium, strontium, in an eta-5 coordination mode which permits the formation of monomeric or dimeric volatile complexes. A compound comprising one or more polysubstituted imidazolate anions coordinated to a metal selected from the group consisting of barium, strontium, magnesium, radium or calcium or mixtures thereof. Alternatively, one anion can be substituted with and a second non-imidazolate anion.
    Type: Application
    Filed: January 28, 2011
    Publication date: February 9, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: John Anthony Thomas Norman, Melanie K. Perez, Moo-Sung Kim
  • Publication number: 20120032378
    Abstract: An integrated system for blast furnace iron making and power production based upon higher levels of oxygen enrichment in the blast gas is disclosed. The integrated system leads to; 1) enhanced productivity in the blast furnace, 2) more efficient power production, and 3) the potential to more economically capture and sequester carbon dioxide. Oxygen enhances the ability of coal to function as a source of carbon and to be gasified within the blast furnace thereby generating an improved fuel-containing top gas.
    Type: Application
    Filed: October 18, 2011
    Publication date: February 9, 2012
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Michael Dennis Lanyi, Joseph Anthony Terrible
  • Publication number: 20120034767
    Abstract: Described herein is a method and liquid-based precursor composition for depositing a multicomponent film. In one embodiment, the method and compositions described herein are used to deposit Germanium Tellurium (GeTe), Antimony Tellurium (SbTe), Antimony Germanium (SbGe), Germanium Antimony Tellurium (GST), Indium Antimony Tellurium (IST), Silver Indium Antimony Tellurium (AIST), Cadmium Telluride (CdTe), Cadmium Selenide (CdSe), Zinc Telluride (ZnTe), Zinc Selenide (ZnSe), Copper indium gallium selenide (CIGS) films or other tellurium and selenium based metal compounds for phase change memory and photovoltaic devices.
    Type: Application
    Filed: February 8, 2011
    Publication date: February 9, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Manchao Xiao, Liu Yang, Xinjian Lei, Iain Buchanan
  • Patent number: 8110535
    Abstract: The present invention relates to semi-aqueous formulations and the method using same, to remove bulk photoresists, post-etched and post-ashed residues, as well as contaminations. The formulation comprises: an alkanolamine, a water miscible organic co-solvent, a quarternary ammonium compound, a non-free acid functionality corrosion inhibitor, and remainder water. The pH is greater than 9.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: February 7, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Matthew I. Egbe
  • Publication number: 20120023823
    Abstract: Disclosed is a cyclonic gasifier and cyclonic gasification method. The cyclonic gasifier and cyclonic gasification method involve a chamber having a first portion proximal to a first end and a second portion proximal to a second end, introducing a first fuel to the first portion of the chamber, introducing a second fuel to the chamber; and introducing a first oxidant to accelerate the velocity of the first fuel and swirl the first fuel from the first portion toward the second portion.
    Type: Application
    Filed: July 29, 2010
    Publication date: February 2, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventor: Mark Daniel D'Agostini
  • Publication number: 20120027656
    Abstract: A feed gas comprising CO2, H2S and H2 is treated to produce an H2-enriched product and a CO2 product. The feed gas is separated by pressure swing adsorption to provide a stream of the H2-enriched product, and two streams of sour gas depleted in H2 and enriched in H2S and CO2 relative to the feed gas. One of the streams of sour gas is processed in an H2S to elemental sulfur conversion system, in which H2S in the sour gas is converted to elemental sulfur order to obtain a stream of sweetened gas, from which the CO2 product is formed. The other of said streams of sour gas is processed in an oxidation system, in which H2S in the sour gas is oxidized to SOx (SO2 and SO3), the SO2 from the oxidation effluent or sulfuric/sulfurous acid obtained therefrom being introduced into the H2S to elemental sulfur conversion system as a reagent.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 2, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Charles Linford Schaffer, Andrew David Wright, Kevin Boyle Fogash, Jeffrey William Kloosterman, Vincent White
  • Publication number: 20120023822
    Abstract: Disclosed is a system and a method of controlled gasification. The method includes introducing a first fuel to a gasifier in a system, introducing a first fuel to a gasifier in a system, generating a product gas by partially oxidizing the first fuel with an oxidizer including oxygen, directing a first portion of the product gas to a process chamber, and selectively introducing a recycled portion of the product gas to the gasifier.
    Type: Application
    Filed: July 29, 2010
    Publication date: February 2, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Mark Daniel D'Agostini, Christopher O'Neill
  • Publication number: 20120027655
    Abstract: A feed gas comprising CO2, H2S and H2 is treated to produce an H2-enriched product and an H2S-lean, CO2 product. The feed gas is separated to provide the H2-enriched product and a stream of sour gas. The stream of sour gas is divided into two parts, one of which is processed in an H2S removal system to form one or more streams of sweetened gas, and the other of which bypasses the H2S removal system, the stream(s) of sweetened gas and the sour gas bypassing the H2S removal system then being recombined to form the H2S-lean, CO2 product gas. The division of the sour gas between being sent to and bypassing the H2S removal system is adjusted responsive to changes in the H2S content of the sour gas, so as to dampen or cancel the effects of said changes on the H2S content of the H2S-lean, CO2 product gas.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 2, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Charles Linford Schaffer, Andrew David Wright, Kevin Boyle Fogash, Jeffrey William Kloosterman, Jeffrey Raymond Hufton
  • Publication number: 20120011856
    Abstract: Both power and H2 are produced from a gaseous mixture, comprising H2 and CO2, using first and second pressure swing adsorption (PSA) systems in series. The gaseous mixture is fed at super-atmospheric pressure to the first PSA system, which comprises adsorbent that selectively adsorbs CO2 at said pressure, and CO2 is adsorbed, thereby providing an H2-enriched mixture at super-atmospheric pressure. A fuel stream is formed from a portion of the H2-enriched mixture, which is combusted and the combustion effluent expanded to generate power. Another portion of the H2-enriched mixture is sent to the second PSA system, which comprises adsorbent that selectively adsorbs CO2 at super-atmospheric pressure, and CO2 is adsorbed, thereby providing a high purity H2 product. In preferred embodiments, the division of H2-enriched mixture between forming the fuel stream and being fed to the second PSA system is adjustable.
    Type: Application
    Filed: July 13, 2010
    Publication date: January 19, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Andrew David Wright, Jeffrey Raymond Hufton, Vincent White, Timothy Christopher Golden
  • Publication number: 20120012000
    Abstract: A feed stream, comprising hydrogen sulphide (H2S), carbon dioxide (CO2), hydrogen (H2) and, optionally, carbon monoxide (CO), is separated into at least a CO2 product stream and an H2 or H2 and CO product stream. The stream is separated using a pressure swing adsorption system, an H2S removal system and a further separation system, which systems are used in series to separate the stream. The method has particular application in the separation of a sour (i.e. sulphur containing) syngas, as for example produced from the gasification of solid or heavy liquid carbonaceous feedstock.
    Type: Application
    Filed: July 13, 2010
    Publication date: January 19, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Andrew David Wright, Vincent White, Kevin Boyle Fogash, Jeffrey William Kloosterman, Jeffrey Raymond Hufton, Charles Linford Schaffer
  • Publication number: 20120012201
    Abstract: An apparatus and process for recovering a desired gas such as xenon difluoride, xenon, argon, helium or neon, from the effluent of a chemical process reactor that utilizes such gases alone or in a gas mixture or in a molecule that becomes decomposed wherein the chemical process reactor uses a sequence of different gas composition not all of which contain the desired gas and the desired gas is captured and recovered substantially only during the time the desired gas is in the effluent.
    Type: Application
    Filed: January 19, 2011
    Publication date: January 19, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: David Charles Winchester, Matthew John Bosco, Gerald W. Klein, Isaac Patrick West, Richard Linton Samsal, Douglas Paul Dee, Andrew David Johnson, Eugene Joseph Karwacki, JR.
  • Publication number: 20120014851
    Abstract: A gaseous mixture, comprising CO2, H2, H2S and optionally CO, is separated into an H2 or H2 and CO product stream (H2/CO product stream), and a CO2 enriched stream containing at least one combustible component selected from H2S, H2, CO and any additional combustible components present in the gaseous mixture. A support fuel stream, comprising one or more combustible components, is combusted to form a stable flame, and the CO2 enriched stream and flame are contacted in the presence of sufficient O2 to combust all or substantially all of the combustible component(s) present in said CO2 enriched stream. A CO2 product stream is formed from said combustion effluent. The support fuel stream may be generated from the process of generating or separating the gaseous mixture or from the H2/CO product stream. Where the CO2 enriched stream contains H2S, the support fuel stream may also be a stream obtained off-site that comprises H2S.
    Type: Application
    Filed: July 13, 2010
    Publication date: January 19, 2012
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Jeffrey William Kloosterman, Kevin Boyle Fogash, Andrew David Wright
  • Publication number: 20120009105
    Abstract: Sulfur dioxide (SO2) is removed from a carbon dioxide feed gas by maintaining the feed gas at elevated pressure(s) in the presence of oxygen (O2), water and NOx for a period of time sufficient to convert SO2 to sulfuric acid and NOx to nitric acid and produce SO2-depleted, NOx-lean carbon dioxide gas. The invention resides in separating the sulfuric and nitric acids from said SO2-depleted, NOx-lean carbon dioxide gas, and then neutralizing the acids by reaction with an alkaline sorbent in an acid/sorbent reactor system to produce sorbent-derive sulfate. The method has particular application in the removal of SO2 and NOx from flue gas produced by oxyfuel combustion of a carbonaceous fuel.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 12, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Vincent White, Kevin Boyle Fogash, Francis Peter Petrocelli
  • Publication number: 20120009106
    Abstract: Sulfur dioxide (SO2) may be removed from carbon dioxide feed gas by contacting the carbon dioxide at an elevated temperature and an elevated pressure with a catalyst for oxidizing SO2, in the presence of oxygen (O2) to convert SO2 to sulfur trioxide (SO3); contacting SO3 in the resultant SO3-enriched carbon dioxide gas with water to produce sulfuric acid and SO2-depleted carbon dioxide gas; and separating the sulfuric acid from the SO2-depleted carbon dioxide gas. If present, NOx is also removed from the carbon dioxide feed gas as nitric acid to produce SO2-depleted, NOx-lean carbon dioxide gas. The method has particular application in the removal of SO2 and NOx from flue gas produced by oxyfuel combustion of a hydrocarbon fuel or carbonaceous fuel, within or downstream of the CO2 compression train of a CO2 recovery and purification system.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 12, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Francis Peter Petrocelli, Kevin Boyle Fogash, Vincent White
  • Publication number: 20120009109
    Abstract: Carbon monoxide (CO) may be removed from flue gas generated by oxyfuel combustion of a hydrocarbon or carbonaceous fuel, by contacting the flue gas, or a CO-containing gas derived therefrom, at a first elevated temperature, e.g. at least 80° C., and at a first elevated pressure, e.g. at least 2 bar (0.2 MPa), with at least one catalyst bed comprising a CO-oxidation catalyst in the presence of oxygen (O2) to convert CO to carbon dioxide and produce carbon dioxide-enriched gas. The carbon dioxide produced from the CO may be recovered from the carbon dioxide-enriched gas using conventional carbon dioxide recovery techniques. NO in the flue gas may also be oxidized to nitrogen dioxide (NO2) and removed using conventional NO2 removal techniques, or may be reduced in the presence of a reducing gas to nitrogen (N2) which does not have to be removed from the gas.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 12, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Andrew David Wright, Vincent White, Timothy Christopher Golden