Patents Assigned to Airak, Inc.
  • Patent number: 6972972
    Abstract: An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load int
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: December 6, 2005
    Assignee: Airak, Inc.
    Inventors: Paul G. Duncan, John Alan Schroeder
  • Publication number: 20050237051
    Abstract: An optical sensor and sensor housing for measuring the magnitude and phase of an electrical current flowing through a conductor. Also disclosed is a flux concentrator method for rejecting external influences of adjacent conductors, as well as a method for attaching said sensor and flux concentrator to non-circular conductors.
    Type: Application
    Filed: March 7, 2005
    Publication date: October 27, 2005
    Applicant: Airak, Inc.
    Inventors: Paul Duncan, John Schroeder, Kee Koo, Robert Becker, Benjamin Feldman, Scott Tilton, Paul Howard
  • Publication number: 20050030015
    Abstract: A system and method for gathering and analyzing data captured from one or more remote sensing units positioned in the field. Remote sensing units preferably utilize optical sensors. Power to sensing unit components is preferably selectively controlled to reduce power consumption. Remote sensing units according to the invention can be used for a variety of purposes, including water quality or electrical power monitoring, and data from such sensing units is preferably transmitted to a secure host terminal via a communications link. The host terminal preferably formats, analyzes, and stores the data for customer review and retrieval. If alarm conditions exist that require immediate customer notification, such notifications can be sent to a customer via one or more telecommunications means. Through the use of the present invention, businesses can shift from a reactive to a proactive mode of monitoring and operation.
    Type: Application
    Filed: July 22, 2003
    Publication date: February 10, 2005
    Applicant: Airak, Inc.
    Inventors: Paul Duncan, Sean Christian
  • Patent number: 6838660
    Abstract: In a preferred embodiment, the invention provides a fiber optic pressure sensor apparatus which includes a light source, a reflective sensor diaphragm movable in accordance with pressure in a medium and an optical fiber coupled to the light source for delivering a first wavefront of light to the reflective sensor diaphragm. The optical fiber has an endface which is separated from the reflective sensor diaphragm by a gap, the endface receiving a second wavefront of light reflected from the reflective sensor diaphragm. The first and second wavefronts constructively and destructively interfere to create a modulated optical signal. A spectrometer is coupled to the optical fiber for converting the optical signal into a series of digital values, and means for analyzing the digital values is provided for obtaining a measurement of the pressure in the medium. An optical coupler is preferably provided for coupling the light source, the optical fiber, and the spectrometer.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: January 4, 2005
    Assignee: Airak, Inc.
    Inventors: Paul Grems Duncan, Sean Michael Christian, John Alan Schroeder
  • Patent number: 6756781
    Abstract: Described are improved transmissive magneto-optical sensors that may be used to determine the magnitude and phase of a magnetic field surrounding a conductor, and when in contact with the conductor, the surface temperature of the conductor. The magneto-optical sensor may be made to be symmetric around the direction of propagation of the internal light, enabling ease of manufacturing as well as automated assembly and calibration. The magneto-optical sensor may also be made to be symmetric about the plane determined by the Faraday rotator material, thus enabling reciprocating optical paths for increased vibration and birefringence immunity. The disclosed sensors preferably include cylindrically symmetrical components, thereby making the sensor readily mass-producible.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: June 29, 2004
    Assignee: Airak, Inc.
    Inventors: Paul Grems Duncan, John Alan Schroeder
  • Publication number: 20040024937
    Abstract: An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load int
    Type: Application
    Filed: April 15, 2003
    Publication date: February 5, 2004
    Applicant: Airak, Inc.
    Inventors: Paul G. Duncan, John Alan Schroeder
  • Patent number: 6670810
    Abstract: A system and method for gathering and analyzing data captured from one or more remote sensing units positioned in the field. Remote sensing units preferably utilize optical sensors. Power to sensing unit components is preferably selectively controlled to reduce power consumption. Remote sensing units according to the invention can be used for a variety of purposes, including water quality or electrical power monitoring, and data from such sensing units is preferably transmitted to a secure host terminal via a communications link. The host terminal preferably formats, analyzes, and stores the data for customer review and retrieval. If alarm conditions exist that require immediate customer notification, such notification can be sent to a customer via one or more telecommunications means. Through the use of the present invention, businesses can shift from a reactive to a proactive mode of monitoring and operation.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: December 30, 2003
    Assignee: Airak, Inc.
    Inventors: Paul G. Duncan, Sean Michael Christian
  • Publication number: 20030146748
    Abstract: Described are improved transmissive magneto-optical sensors that may be used to determine the magnitude and phase of a magnetic field surrounding a conductor, and when in contact with the conductor, the surface temperature of the conductor. The magneto-optical sensor may be made to be symmetric around the direction of propagation of the internal light, enabling ease of manufacturing as well as automated assembly and calibration. The magneto-optical sensor may also be made to be symmetric about the plane determined by the Faraday rotator material, thus enabling reciprocating optical paths for increased vibration and birefringence immunity. The disclosed sensors preferably include cylindrically symmetrical components, thereby making the sensor readily mass-producible.
    Type: Application
    Filed: November 15, 2002
    Publication date: August 7, 2003
    Applicant: Airak, Inc.
    Inventors: Paul Grems Duncan, John Alan Schroeder
  • Patent number: 6551583
    Abstract: An antibiofouling material, a method for making said antibiofouling material, a sensor apparatus employing said antibiofouling material, and a method of making said sensor apparatus. The disclosed antibiofouling material includes one or more biocides and one or more charge transfer compounds are embedded within a copolymer host matrix. Biocides used in the present invention may include, but are not limited to, Halobenzonitriles, Azoles, diuron; and simazine. Among its uses, the antibiofouling material of the present invention can be used in a sensor apparatus. In a preferred embodiment, one or more surfaces of said sensor apparatus are coated with an antibiofouling material comprised of one or more biocides, one or more charge transfer compounds, and a copolymer host matrix.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: April 22, 2003
    Assignee: Airak, Inc,
    Inventors: Paul G. Duncan, Sean Michael Christian, David M. Orcutt
  • Patent number: 6496265
    Abstract: A method for calculating a distance from a fiber optic tip of a sensor to a reflective surface by high pass filtering a fringe signal gathered by a spectrometer, calculating a power spectral density of the filtered signal, and using a calibrated distance vs. peak spectral density wavelength curve to determine the measured distance. This fiber optic distance measurement technique can be applied to a variety of sensor types, including, but not limited to, pressure, displacement, temperature, acoustic, pressure, load, and magnetic field sensors.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: December 17, 2002
    Assignee: Airak, Inc.
    Inventors: Paul Grems Duncan, Sean Michael Christian, Kevin Anthony Shinpaugh