Abstract: An aircraft is capable of passing from the aerial domain to the spatial domain and method for automatically adapting the configuration of same. An additional breathable gas supply is provided to be activated only during a flight phase during which aerobic propulsion is interrupted, and is capable of supplying the control system of the manned cabin environment instead of the system associated with the aerobic propulsion means.
Abstract: A system and method for detecting and locating an insulation flaw in a solar generator on a spacecraft. The solar generator comprises a plurality of flaps. Each flap bears at least one solar cell that is connected to an electrical distribution network and electrically insulated from the flap. Each flap is connected, by a first load and by a second load, to a first electrical line and a second electrical line, respectively. The ratio of the impedances of the first load and of the second load of a flap being denoted as an impedance ratio of the flap. The solar generator comprises at least two flaps exhibiting different respective impedance ratios. The system comprises a component for evaluating the currents flowing in the first and second electrical lines, and a detector for detecting and locating an insulation flaw in the solar generator based on the evaluations of the currents.
Type:
Grant
Filed:
December 20, 2013
Date of Patent:
November 29, 2016
Assignees:
AIRBUS DEFENCE AND SPACE SAS, CENTRE NATIONAL D'ETUDES SPATIALES CNES
Abstract: A method and a toolset for manufacturing a metal liner for a composite vessel includes a mandrel configured in several mandrel elements forming support elements of primary parts constituting the metal liner.
Abstract: A segmented structure includes at least two panels, a so-called main panel and a so-called secondary panel, as well as at least one deployment device configured to move the connected secondary panel into a storage position or into a deployed position. The deployment device includes a translation system provided with at least one helical geared motor configured to translate the secondary panel relative to the main panel. The translation system further includes a rotation system configured to rotate the translation system and the secondary panel connected to the translation system, relative to said main panel.
Abstract: A telecommunications satellite stabilized on three axes includes a set of dissipative equipment constituting a payload of the satellite. The satellite includes support data transmission antennas and is substantially parallelepipedal in shape with the panels forming two opposite faces, east and west faces. The panels form two additional opposite faces, north and south faces, and include radiator surfaces on their external faces. The radiator surfaces are configured to cool the electronic equipment of the satellite. The equipment installed on the north and south panels dissipate thermal power corresponding to less than 25% of the total dissipated power.
Type:
Application
Filed:
December 24, 2014
Publication date:
November 10, 2016
Applicant:
AIRBUS DEFENCE AND SPACE SAS
Inventors:
RAPHAËL HACHE, BRUNO TRANCART, ANDREW WALKER
Abstract: A segmented structure includes at least two panels, wherein a first panel is referred to as main panel, and a second panel is referred to as secondary panel. The structure also includes at least one deployment device having a connecting arm secured to the rear face of the secondary panel and connected to the rear face of the main panel. The deployment device includes a movement system with a rotation unit that generates a rotation of the connecting arm about a reference axis, and a translation unit that generates a movement of the connecting arm in translation along this reference axis, so as bring the secondary panel into a stowed position or into a deployed position.
Abstract: A telecommunications system for intermittent data transfer from and to at least one user located substantially on the surface of a celestial body. The system comprises at least one surface transmitter/receiver terminal associated with each user, one or more signal repeater means for the signals transmitted and/or received from the surface terminals. Each moving repeater means has at least one antenna oriented toward the surface of the celestial body, and adapted to allow communications from and to surface terminals. Each antenna produces a transmission/reception beam, the track of which on the surface of the celestial body forms the ground track, the progressive sweeping of the surface by this ground track forming a strip called a swath.
Abstract: A method and telecommunications system for identifying uplink multiplexing resources of a multi-beam satellite that are usable in a land-based telecommunications system, e.g., a transmitting station for transmitting radio signals to a receiving station. The transmitting station or the receiving station being a base station having a range defining a coverage area. For a given uplink multiplexing resource, a maximum allowable interference level, with respect to the satellite, for radio-electric signals transmitted from the coverage area is estimated. A potential interference level of the transmitting station is estimated. The transmitting station determines the usability of the given uplink multiplexing resource by comparing the potential interference level with the maximum allowed interference level for the given uplink multiplexing resource.
Abstract: According to the present invention, use is made of a probe provided with a central sensor, with off-centred sensors and lateral sensors, and said probe is articulated on the aircraft around two orthogonal axes.
Abstract: A segmented structure includes at least two panels, a first panel, called the main panel, a second panel, called the secondary panel. The structure further includes at least one deployment device configured to move secondary panel into a storage position or a deployed position. The deployment device has a translation system having an assembly with articulated arms, wherein the translation system is able to generate a movement of the secondary panel in translation in relation to the main panel. The translation system is connected to the secondary panel by an outer end. A rotation system is able to generate a rotation of the translation system and of the secondary panel connected to the translation system, in relation to the main panel.
Abstract: A method of command of magneto-torquers of an attitude control system of a space vehicle subjected to an external magnetic field of variable direction. The magneto-torquers are configured to desaturate an angular momentum storage device by transferring angular momentum and configured to form, in cooperation with the local external magnetic field, magnetic couples in a plane orthogonal to the direction of the local external magnetic field or a local control plane. The magnetic couple to be formed in the local control plane is determined as a function of the component of a desired attitude control couple which is orthogonal to the local control plane or a locally uncontrollable component. The contribution of the locally uncontrollable component to the magnetic couple to be formed is non-zero when the locally uncontrollable component is non-zero.
Abstract: A method (50) for detecting broadcast signals, transmitted by terrestrial sources (40) and received by a satellite (20), in individual signals obtained respectively from different individual antennas (24) of an antenna array (22) of the satellite, includes a first detection iteration (51a) and a second detection iteration (51b), each of the first and second detection iterations including a step (52) of forming, from the individual signals, virtual beams of different respective main radiation directions, and a step of searching for the presence of broadcast signals in the virtual beams. Furthermore, for at least one broadcast signal detected during the first detection iteration, the respective contributions of the at least one detected broadcast signal to the different individual signals are attenuated, relative to the first detection iteration, for all or part of the virtual beams formed during the second detection iteration. A system (10) for detecting broadcast signals is also described.
Abstract: The invention concerns a laser amplification system comprising a pumping device and at least one thick amplifier disc having a first face, which is reflective at the wavelengths of a pulsed laser beam of the laser amplification system and of a pump beam of the pumping device, as well as at least one heat-dissipation component to which this first face of the amplifier disc is firmly secured, the saturation fluence of the active medium of the amplifier disc being equal to or less than 3 J·cm?2.
Type:
Application
Filed:
May 20, 2014
Publication date:
April 28, 2016
Applicants:
COMPAGNIE INDUSTRIELLE DES LASERS CILAS, AIRBUS DEFENCE AND SPACE SAS
Inventors:
Jean-Eucher Montagne, Sandrine Auroux, Bruno Esmiller
Abstract: The present invention concerns a method for correcting a digital image stored by a client device by geometric adjustment of this image onto a reference image stored by a server device connected to the client device by a communication network.
Type:
Grant
Filed:
September 24, 2012
Date of Patent:
April 19, 2016
Assignee:
AIRBUS DEFENCE AND SPACE SAS
Inventors:
Arnaud Cauchy, Thierry Poglio, Alexandre Robin
Abstract: A system allowing for the tilting of the rocket motor such that, in the tilted position, the centre of the nozzle is located at least approximately on the neutral orientation axis of said rocket motor.
Abstract: An electric motor (1) with permanent magnets includes a rotor (4), on which permanent magnets are fastened (6), and a stator (2). The stator includes a stator structure and coils (5) installed on the stator structure. The stator structure is realized by an assembly of at least three independent stator elements (21), assembled on a baseplate (3) with no direct mechanical linkage between them. Each stator element (21) is fastened onto the baseplate (3) of the motor by an adjusted fastener (31) and at least one anti-rotation element (32). Preferably, the stator elements (21) are made of a material that is a good heat conductor and electrical insulator, such as a ceramic.
Abstract: A network of switches includes N input accesses and M output accesses, with each of the switches including four ports and with the network input and output accesses being connection switch ports. The network includes at least one stage of switches, with each stage including: a pair of switch lines whose ports are not used as network input or output accesses, referred to as “interconnection switches”, a line being a set of interconnection switches connected to one another; and at least two transverse arms linking interconnection switches of different lines, a transverse arm consisting of elements that are separate from those of the other transverse arms, a transverse arm including at least two links and a switch, referred to as “transverse switch” with the connection switches being transverse switches. At least two transverse switches from different transverse arms of each stage are connection switches of the network.
Abstract: A vibration isolation device designed to be positioned between a structure (10) and an equipment anchor plate (11), includes a lattice made of bars, with each bar including at least one axial actuator (25), the lattice being an active hexapod including six identical isolation bars (12) positioned according to a regular geometry, the six bars (12) being arranged such that the control of the tension-compression forces in each of the six bars (12) makes possible the force and torque control of six separate degrees of freedom at the interface between the structure and the equipment, so as to produce effective isolation along all the system's degrees of freedom. At least one end-fitting of each bar consists of an element (16) made of elastomeric material (called “elastomeric element”).