Abstract: A method for optimizing the operation of at least one first propeller and of at least one second propeller of a hybrid helicopter. The method comprises the following step during a control phase: deflection, with an autopilot system, of at least one aerodynamic stabilizer member into a setpoint position having, with respect to a reference position, a target deflection angle that is a function of a setpoint deflection angle, the setpoint deflection angle being calculated by the autopilot system in order to compensate for a torque exerted by the lift rotor at zero sideslip.
Abstract: A jettisonable emergency exit for a vehicle, comprising an outer peripheral edge that is adapted to be accommodated in an associated frame provided in a vehicle, wherein at least one emergency exit retention means and at least one emergency exit locking device are integrated into the outer peripheral edge, the at least one emergency exit retention means comprising at least one non-retractable pivot finger around which the jettisonable emergency exit is rotatable in an emergency mode, and the at least one emergency exit locking device comprising at least one locking hook that is adapted for locking the jettisonable emergency exit in an associated locking position in normal operation mode and for releasing the jettisonable emergency exit in an associated retracted position in the emergency mode.
Type:
Grant
Filed:
June 1, 2016
Date of Patent:
October 20, 2020
Assignees:
AIRBUS HELICOPTERS DEUTSCHLAND GMBH, AIRBUS HELICOPTER
Inventors:
Fabrice Joussellin, Aurelien Vayssiere, Pierre Fruitet, Laure-Anne Mathieu, Hassene Heboub, Philippe Benentendi
Abstract: A control system for controlling at least collective pitch of rotor blades, of a multi-blade rotor with a rotor shaft in a rotary-wing aircraft, the control system comprising a non-rotating sliding sleeve that is mountable to the rotor shaft such that the non-rotating sliding sleeve is axially displaceable coaxially to an associated rotor axis on the rotor shaft, at least one actuator arm that is pivotally mounted to the non-rotating sliding sleeve and adapted for axially displacing the non-rotating sliding sleeve that is mounted to the rotor shaft upon activation, and at least one hinge support that is adapted for a hinged support of the at least one actuator arm.