Abstract: An adjustment mechanism of a device for coupling a flap to a wing of an aerofoil and for adjusting the flap. The adjustment mechanism includes: a first lever, hinged to the wing via a first rotational joint to form a first axis of rotation; a second lever; a third lever, hingedly coupled to the second lever via a second rotational joint to form a second axis of rotation and hingedly coupled to the flap via a fourth rotational joint; and a push-pull rod, which is connected via a first ball joint to the second lever and via a second ball joint to the flap. The first lever and the second lever are hingedly coupled to one another via a middle joint to form a third axis of rotation. The first, second and third axes of rotation in each position of the flap run through a common pole.
Abstract: Apparatus for preventing fluid spray at a leakage area of a fluid pipe comprises at least one first enveloping element and at least one second enveloping element which encloses the fluid pipe so as to be flush with it, and which are circumferentially interrupted, wherein the circumferential interruptions of the enveloping elements are arranged so as to be offset relative to each other. In this way, fluid spray formation may be prevented in an economical way. The simple design ensures easy installation and economical production.
Type:
Grant
Filed:
January 5, 2010
Date of Patent:
November 19, 2013
Assignee:
Airbus Operations GmbH
Inventors:
Timo Bruening, Rolf Goessing, Norbert Rostek
Abstract: According to the invention, an alert may be generated when a sudden inversion of the rudder occurs. To this end, the pilot having beforehand moved a commanding system in such a manner that the movement of the commanding system overcomes the position of the commanding system corresponding to the maximum rotation breakpoint in one of the rotating directions of the rudder. The alert is launched if, during a first time interval having a predetermined duration, the pilot moves the commanding system in such a manner that the movement of the commanding system overcomes the position of the commanding system corresponding to the maximum rotation breakpoint in the other rotating direction of the rudder, thereby indicating a sudden rudder inversion and a potential unsafe condition to be corrected by the pilot.
Abstract: An aircraft spherical bearing assembly comprises a first part which is in sliding contact with an intermediate part for sliding therebetween to form a spherical joint. A second slip path is provided between the intermediate component and an outer component which can be selectively actuated when the force through the first slip path exceeds a predetermined level.
Abstract: A method for repairing the skin of the fuselage of an airplane from the inside to be used when the skin of the fuselage has been damaged between a first stringer and a second stringer adjacent to the first one is provided. The method includes filling the damage, placing a first doubler over the filling, placing a second doubler over the first doubler and bending this second doubler at least over a flange of one of the stringers, and securing the second doubler.
Type:
Grant
Filed:
October 27, 2011
Date of Patent:
November 19, 2013
Assignee:
Airbus Operations, S.L.
Inventors:
José María Pina López, Enrique Vera Villares
Abstract: A method for controlling the piloting of an aircraft comprising the steps of receiving at least one first instruction for modification of a current velocity vector of the aircraft, determining a target velocity vector of the aircraft, on the basis of said at least one first instruction received, and determining, on the basis at least of said target velocity vector, at least one actuation command intended for at least one actuator of the aircraft in order to modify the movement of the aircraft according to said at least one first instruction received.
Type:
Application
Filed:
May 3, 2013
Publication date:
November 14, 2013
Applicant:
Airbus Operations (SAS)
Inventors:
Guilhem Puyou, Matthias Eberle, Fabien Perrin, Javier Manjon Sanchez
Abstract: A manufacturing procedure of a composite material part (11), with an edge region (13) destined to be joined to another part by rivets, making a change in the geometry of said edge region (13) with respect to an initial surface (41) on the part's external face, comprising the following steps: a) providing a laying-up tool incorporating a modified surface (43) according to said change in the edge region (13) geometry; b) providing the composite material plies needed for the laying-up of the part, with the plies (51, 51?, . . . , 51n) destined for the edge region (13) of the part affected by the geometric modification being already cut so that they finish as they reach said modified surface (43); c) laying-up said plies over said tool and curing the resultant laminate. The invention also refers to a lower skin of an aircraft wing (11) manufactured according to said procedure.
Type:
Grant
Filed:
January 21, 2011
Date of Patent:
November 12, 2013
Assignee:
Airbus Operations S.L.
Inventors:
Teresa Latorre Plaza, Luis Miguel Garcia Vázquez, Manuel Recio Melero
Abstract: Disclosed is a process for producing a substantially shell-shaped component, from substantially carbon-fiber-reinforced synthetic material having at least one local reinforcing zone and at least one stiffening element, in particular a fuselage shell, a wing shell, a vertical stabilizer shell or horizontal stabilizer shell of an aircraft or the like. The process according to the invention comprises the following steps: arranging at least one doubler which has already been cured, on an at most partially cured shell skin to form the local reinforcing zone, applying at least one stiffening element which has already been cured, and placing at least one at most partially cured connecting angle bracket against the at least one stiffening element at least in the region of the at least one doubler, and curing the shell skin and the connecting angle bracket.
Abstract: The invention relates to a method and a device for checking a communication system (3) comprising a plurality of modules (7) adapted to be installed in an aircraft under development (5), said checking device including: means (11) for building an identification and synchronization database (17) for said communication system (3), said database contractually defining interfaces between said plurality of modules from change notes relative to an initial technical definition, means (11) for defining, in said database (17), signals configured to be exchanged between said plurality of modules (7) via a plurality of connections (3) interconnecting said interfaces, said signals being defined to be synchronized with each other as well as with the physical materialization of said connections, and means (11) for checking, before an evaluation of a maturation test of the communication system (3), an interface consistency for all of said signals of said database (17).
Abstract: An aircraft includes a part defining an aerodynamic surface against which flows an air stream, with at least one hood able to block an opening made at the aerodynamic surface, kept in the closed position by at least one locking mechanism, and an access flap for the locking mechanism, pivoting relative to the hood around an axis substantially parallel to the flow direction of the air stream and including elements for keeping it flattened against the hood, characterized in that it includes a device for protection of the access flap that includes a coverage plate that pivots around an axis of rotation, and which is able to occupy a first position in which it projects relative to the aerodynamic surface and another position in which after pivoting around the axis of rotation, it is flattened against the outside surface of the access flap such that the protective device limits the appearance of a scoop phenomenon.
Abstract: An aircraft slat assembly comprising a pair of slats separated by a gap. A weather seal seals the gap between the slats and forms part of an outer aerodynamic surface of the slat assembly. An anti-icing system is provided with a pair of piccolo tubes, each tube being housed within a respective one of the slats and having spray holes for delivering hot gas to a leading edge of the slat in which it is housed. A flexible duct delivers hot gas between the piccolo tubes, the flexible duct passing across the gap between the slats. A vent in the weather seal can open to permit hot gas from the anti-icing system to exit the gap between the slats.
Abstract: An ultrasound scanner (100) which has a plurality of ultrasound transducers (104) directed normal to a scanning surface (106) to scan a workpiece (114), the scanner (100) comprising a couplant filled latex rubber sheath (106) shaped to the surface of a workpiece (114).
Abstract: A blind fixation device for attaching an assembly of a pre-drilled member set that includes a rod defining a traction mandrel, a first bushing, and a second deformation brushing. The second deformation bushing is capable of deformation on an inaccessible side of the set of pre-drilled members between the head of the mandrel rod and the end portion of the first bushing. The first bushing is capable of bearing on the accessible side surface of the set of pre-drilled members to be assembled, and is capable of radial deformation so as to come in close contact with the drilling profile of at least one pre-drilled member when, upon assembly, the portion of the mandrel rod initially in the second bushing enters the first bushing.
Abstract: A system for setting a span load distribution of a wing of an aircraft with a base flap system comprises at least one inboard flap element and one outboard flap element, which elements in the direction of the span are arranged on the trailing edge of the wing, and can be positioned relative to the span direction of the wing. The flap elements are not mechanically coupled with each other and are controlled independently of each other for the purpose of setting the span load distribution.
Abstract: A ball slide bearing (18) includes an inside ring (19) and an outside ring (21), whereby the inside ring (19) is provided with an essentially cylindrical inner surface (19A) and a spherical outer surface (19B), and whereby the outside ring (21) is provided with a cylindrical outer surface (21B) and a cylindrical inner surface (21A). The bearing (18) includes an intermediate ring (20) that is inserted between the outside ring (21) and the inside ring (19), whereby the intermediate ring is provided with a spherical inner surface (20A) that can work with the outer surface of the inside ring (19) to allow the rotation along the three axes of rotation and an outer surface that defines at least one curved sliding surface (20B) in a direction that can work with a corresponding inside sliding surface (21A) of the outside ring (21).
Abstract: The invention relates to a method for joining precured stringers to at least one structural component of an aircraft or spacecraft. A vacuum arrangement required for the joining is produced in two parts. In a first step, each precured stringer is covered in advance by a covering vacuum film. The stringers prepared in this manner are arranged on the structural component. Vacuum film strips are subsequently arranged in each case on adjacent stringers and over an intermediate space between the adjacent stringers. With the use of a vacuum sealing means, the vacuum film strips and the covering vacuum films 8 form a continuous vacuum arrangement. The stringers are subsequently joined under pressurization to the structural component with the use of this vacuum arrangement.
Type:
Grant
Filed:
September 26, 2007
Date of Patent:
November 5, 2013
Assignee:
Airbus Operations GmbH
Inventors:
Peter Sander, Hans Marquardt, Hauke Lengsfeld
Abstract: A rear tail assembly for an aircraft, including a fuselage, a wing and at least one propulsion engine attached in the rear portion of the fuselage located behind the wing along the X longitudinal axis of the aircraft, wherein the aforementioned assembly includes aerodynamic surfaces connected in the rear portion of the fuselage. The tail assembly essentially includes horizontal aerodynamic surfaces and essentially vertical aerodynamic surface arranged so as to form an annular structure including at least one ring attached to the fuselage. At least one engine is held in the ring formed by the tail assembly. In one embodiment, a central fin is used for defining two rings in the annular structure. In particular embodiments of an aircraft including such a tail assembly, one or two engines can be fitted in the ring area.
Abstract: The present invention relates to an on-board aeronautic system intended to be dynamically reconfigured, especially an on-board information system, and to an associated method as well as to an aircraft comprising such a system. In particular, the system comprises a plurality of heterogeneous equipment items, at least part of the said equipment items being reconfigurable, and comprises a reconfiguration management center set up to receive state messages from the said plurality of equipment items and to emit reconfiguration messages destined for the said reconfigurable equipment items as a function of at least the said received messages, the said state messages being emitted according to the same format by monitoring means encompassed in each of the said equipment items, the reconfigurable equipment items encompassing reconfiguration means capable of processing at least one of the said reconfiguration messages in order to reconfigure the said associated equipment item.
Abstract: A force level control for an energy absorber is provided for aircraft, and includes an adjustment element and a housing, whereby via the adjustment element, a bending radius of the energy absorber element is continuously adjustable in the housing.
Type:
Grant
Filed:
January 31, 2007
Date of Patent:
November 5, 2013
Assignee:
Airbus Operations GmbH
Inventors:
Dirk Humfeldt, Michael Harriehausen, Jan Schroeder, Martin Sperber, Michael Demary
Abstract: A die tool for forming a C-section component having radiused shoulders has first and second outer dies, each outer die having a truncated conical portion connected to a flange portion by a radiused portion and being symmetrically disposed to one another along a common axis such that each flange portion is outermost, and a cylindrical outer support die located between the first and second outer dies.