Abstract: A method and system for detecting, quantifying or characterizing emitting sources. According to an embodiment, an emission source is located by monitoring an area with one or more sensors, determining a plume, generating one or more candidates for the emission source, and using the plume to derive one or more characteristics associated with the emission source, and then locating the emission source based on agreement or convergence of the one or more characteristics.
Abstract: A system and method for quantifying an emission source is provided. The system and method obtain a plurality of emission concentration measurements at one or more sampling points and wind data over the time the emission concentrations are measured. For each sampling point, a virtual sampling arc can be constructed using the emission concentration measurements taken at the sampling point, the wind data for when the emission concentration measurement were taken and an approximate distance to the emission source. The virtual sampling arcs can then be used to construct one or more virtual sampling grids and the amount of emissions emanating from the emissions source approximated from the virtual sampling grids.
Abstract: A system and method for quantifying an emission source is provided. The system and method obtain a plurality of emission concentration measurements at one or more sampling points and wind data over the time the emission concentrations are measured. For each sampling point, a virtual sampling arc can be constructed using the emission concentration measurements taken at the sampling point, the wind data for when the emission concentration measurement were taken and an approximate distance to the emission source. The virtual sampling arcs can then be used to construct one or more virtual sampling grids and the amount of emissions emanating from the emissions source approximated from the virtual sampling grids.
Abstract: The present invention relates to the monitoring of gas concentrations possible in very low ranges (i.e., low ppb and even ppt ranges) and especially use thereof in environmental monitoring, exposure assessment, bomb detection, and health studies. The invention can use a spatial and temporal assessment of gas concentrations that enables the sources of the gas in question to be located and identified which is useful in environmental and health field but can also be applied to other fields an example of which is detecting and locating explosives. This technology can uses small, light weight, and low power components that allow for the monitor to be portable and even worn on a person as a personal monitor. This technology can be used in a stationary monitors as well.
Abstract: The present invention relates to the monitoring of gas concentrations possible in very low ranges (i.e., low ppb and even ppt ranges) and especially use thereof in environmental monitoring, exposure assessment, bomb detection, and health studies. The invention can use a spatial and temporal assessment of gas concentrations that enables the sources of the gas in question to be located and identified which is useful in environmental and health field but can also be applied to other fields an example of which is detecting and locating explosives. This technology can uses small, light weight, and low power components that allow for the monitor to be portable and even worn on a person as a personal monitor. This technology can be used in a stationary monitors as well.