Patents Assigned to Aires Medical LLC
  • Patent number: 10799663
    Abstract: A pressure swing adsorption (PSA) system and methods for controlling each PSA cycle performed by the PSA system to produce oxygen enriched gas during productive portions of a user breathing cycle, and to cease production of oxygen enriched gas during non-productive portions of the user breathing cycle, is provided. The PSA system synchronizes PSA cycle phases including adsorption and desorption phases with a user's individual inhalation and exhalation phases, on a breath by breath basis, such that each PSA cycle can be dynamically varied from a succeeding PSA cycle, in real time in response to variations in the user's breathing cycle. An oxygen delivery device including a breathing cycle sensor provides breathing cycle inputs to a controller for use with at least one algorithm to detect breathing flow phases during each user breath, and to synchronize each PSA cycle to the user's breathing flow phases, on a breath-by-breath basis.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: October 13, 2020
    Assignee: Aires Medical LLC
    Inventors: Nicholas L. Oddo, Peter D. Fitchen, Eugene H. Breniman
  • Publication number: 20200306486
    Abstract: A pressure swing adsorption (PSA) system and methods for controlling each PSA cycle performed by the PSA system to produce oxygen enriched gas during productive portions of a user breathing cycle, and to cease production of oxygen enriched gas during non-productive portions of the user breathing cycle, is provided. The PSA system synchronizes PSA cycle phases including adsorption and desorption phases with a user's individual inhalation and exhalation phases, on a breath by breath basis, such that each PSA cycle can be dynamically varied from a succeeding PSA cycle, in real time in response to variations in the user's breathing cycle. An oxygen delivery device including a breathing cycle sensor provides breathing cycle inputs to a controller for use with at least one algorithm to detect breathing flow phases during each user breath, and to synchronize each PSA cycle to the user's breathing flow phases, on a breath-by-breath basis.
    Type: Application
    Filed: June 12, 2020
    Publication date: October 1, 2020
    Applicant: Aires Medical LLC
    Inventors: Nicholas L. Oddo, Peter D. Fitchen, Eugene H. Breniman
  • Publication number: 20200179638
    Abstract: A pressure swing adsorption (PSA) system and methods for controlling each PSA cycle performed by the PSA system to produce oxygen enriched gas during productive portions of a user breathing cycle, and to cease production of oxygen enriched gas during non-productive portions of the user breathing cycle, is provided. The PSA system synchronizes PSA cycle phases including adsorption and desorption phases with a user's individual inhalation and exhalation phases, on a breath by breath basis, such that each PSA cycle can be dynamically varied from a succeeding PSA cycle, in real time in response to variations in the user's breathing cycle. An oxygen delivery device including a breathing cycle sensor provides breathing cycle inputs to a controller for use with at least one algorithm to detect breathing flow phases during each user breath, and to synchronize each PSA cycle to the user's breathing flow phases, on a breath-by-breath basis.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 11, 2020
    Applicant: Aires Medical LLC
    Inventors: Nicholas L. Oddo, Peter D. Fitchen, Eugene H. Breniman
  • Publication number: 20200101252
    Abstract: An oxygen delivery apparatus wearable by user includes a frame including nose pads connected to a bridge portion, an oxygen inlet defined by one of the nose pads, an oxygen inlet defined by the frame, and a hollow channel contained by the frame. The oxygen inlet and oxygen outlet are in fluid communication via the hollow channel. The frame can be formed as a monolithic structure using additive manufacturing. A nasal prong can be connected to the oxygen outlet such that a prong outlet of the prong is in fluid communication with the hollow channel. The prong outlet is positioned within a nostril of the user during use of the apparatus. A method of fabricating the frame includes obtaining measurement information for at least one of a head feature or facial characteristic of the user and generating a digital model of the oxygen delivery apparatus using the measurement information.
    Type: Application
    Filed: July 25, 2019
    Publication date: April 2, 2020
    Applicant: Aires Medical LLC
    Inventor: Nicholas Leonard Oddo