Patents Assigned to Airware, Inc.
  • Patent number: 11892400
    Abstract: An absorption spectroscopy process uses a single radiation beam with two or more pulsed beams (including at least a signal beam and a reference beam) that are passed into a liquid sample to a variable effective depth and then reflected out of the liquid sample where it is detected and processed to obtain a value over a preselected time. As values are determined for multiple effective depths, a sampling dataset is obtained which is used to calculate a concentration level of a targeted particle in the liquid sample by use of calibration dataset obtained from use of known samples.
    Type: Grant
    Filed: August 25, 2023
    Date of Patent: February 6, 2024
    Assignee: AIRWARE, INC
    Inventors: Thomas G Campbell, Jacob Y Wong
  • Patent number: 11747259
    Abstract: Increased precision for liquid absorption spectroscopy, especially for in vivo samples of human analytes, is obtained by varying the signal or signal and interference central wavelengths when the temperature of the sample site varies beyond a selected threshold used for determining standardized signal or signal and interference central wavelengths. The amount of variance for a central wavelength of the signal beam which includes 1,150 nm is approximately 2 nm or less.
    Type: Grant
    Filed: February 27, 2023
    Date of Patent: September 5, 2023
    Assignee: AIRWARE, INC.
    Inventors: Thomas G Campbell, Jacob Y Wong
  • Patent number: 10983046
    Abstract: The concentration of a targeted molecule (such as glucose) in a liquid medium having at least one interfering molecule coexisting with the targeted molecule is detected by use of NDIR and a sampling technique in which an imposed location of a pulse beam from a signal source, an interference source and a reference source is varied over a plurality of sites of a sampling area.
    Type: Grant
    Filed: October 12, 2019
    Date of Patent: April 20, 2021
    Assignee: Airware, Inc.
    Inventors: Thomas G. Campbell, Jacob Y Wong
  • Publication number: 20200150033
    Abstract: The concentration of a targeted molecule (such as glucose) in a liquid medium having at least one interfering molecule coexisting with the targeted molecule is detected by use of NDIR and a sampling technique in which an imposed location of a pulse beam from a signal source, an interference source and a reference source is varied over a plurality of sites of a sampling area.
    Type: Application
    Filed: October 12, 2019
    Publication date: May 14, 2020
    Applicant: Airware, Inc.
    Inventors: Thomas G. Campbell, Jacob Y. Wong
  • Patent number: 10473586
    Abstract: The concentration of a targeted molecule (such as glucose) in a liquid medium having at least one interfering molecule coexisting with the targeted molecule is detected by use of NDIR and a sampling technique in which an imposed location of a pulse beam from a signal source, an interference source and a reference source is varied over a plurality of sites of a sampling area.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: November 12, 2019
    Assignee: AIRWARE, INC.
    Inventors: Thomas Campbell, Jacob Y Wong
  • Publication number: 20190219500
    Abstract: The concentration of a targeted molecule (such as glucose) in a liquid medium having at least one interfering molecule coexisting with the targeted molecule is detected by use of NDIR and a sampling technique in which an imposed location of a pulse beam from a signal source, an interference source and a reference source is varied over a plurality of sites of a sampling area.
    Type: Application
    Filed: March 20, 2019
    Publication date: July 18, 2019
    Applicant: Airware, Inc.
    Inventors: Thomas Campbell, Jacob Y. Wong
  • Patent number: 10241044
    Abstract: For determining concentration of targeted molecules MG in a liquid sample admixed with interfering molecules MJ which overlap their absorption band, a special NDIR sampling and calibration technique is employed. Besides the signal source, a reference and one or more interference sources are added. The selection of the wavelength for the interference sources enables its measured transmittance value to be used for deciding the validity of the calibration curve for molecules MG in the liquid sample. This value can further be used to adjust the calibration curve via a parameter linking the transmittances measured at the signal and interference wavelength channels in order to assure its validity.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: March 26, 2019
    Assignee: AIRWARE, INC.
    Inventors: Jacob Y Wong, Thomas Campbell
  • Publication number: 20190025207
    Abstract: For determining concentration of targeted molecules MG in a liquid sample admixed with interfering molecules MJ which overlap their absorption band, a special NDIR sampling and calibration technique is employed. Besides the signal source, a reference and one or more interference sources are added. The selection of the wavelength for the interference sources enables its measured transmittance value to be used for deciding the validity of the calibration curve for molecules MG in the liquid sample. This value can further be used to adjust the calibration curve via a parameter linking the transmittances measured at the signal and interference wavelength channels in order to assure its validity.
    Type: Application
    Filed: August 7, 2018
    Publication date: January 24, 2019
    Applicant: Airware, Inc.
    Inventors: Jacob Y. Wong, Thomas Campbell
  • Patent number: 10041881
    Abstract: A glucose sensor measures glucose molecules in vivo through use of NDIR in which scattering noise is reduced and Absorption Interference Noise (AIN) is suppressed with a reflection technique. Electronics are used to provide an output of glucose concentration glucose in a liquid sampling matrix after it has been determined that a calibration curve is valid after signal processing is used to obtain average ratio values for reflected signal/reference channels and interference/reference channel obtained after a pulsed beam from signal, interference and reference sources is directed at an inclined angle to a normal of a spot of the liquid sampling matrix. The signal, interference and reference sources are each pulsed at a preselected frequency of at least N Hz which is sufficiently fast so that a given molecule of glucose or interfering molecule will not pass in and out of the liquid sampling matrix within the preselected frequency.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: August 7, 2018
    Assignee: AIRWARE, INC.
    Inventors: Jacob Y Wong, Thomas Campbell
  • Publication number: 20180143134
    Abstract: A glucose sensor measures glucose molecules in vivo through use of NDIR in which scattering noise is reduced and Absorption Interference Noise (AIN) is suppressed with a reflection technique. Electronics are used to provide an output of glucose concentration glucose in a liquid sampling matrix after it has been determined that a calibration curve is valid after signal processing is used to obtain average ratio values for reflected signal/reference channels and interference/reference channel obtained after a pulsed beam from signal, interference and reference sources is directed at an inclined angle to a normal of a spot of the liquid sampling matrix. The signal, interference and reference sources are each pulsed at a preselected frequency of at least N Hz which is sufficiently fast so that a given molecule of glucose or interfering molecule will not pass in and out of the liquid sampling matrix within the preselected frequency.
    Type: Application
    Filed: October 17, 2017
    Publication date: May 24, 2018
    Applicant: Airware, Inc.
    Inventors: Jacob Y. Wong, Thomas Campbell
  • Patent number: 9823185
    Abstract: For determining concentration of a targeted molecule M in a liquid sample admixed with interfering molecules MJ which overlap its absorption band, a NDIR reflection sampling technique is used. Besides the signal source, a reference and an interference source are added. M is calculated by electronics which use Rave(t) from a pulsed signal and reference channel output and a calibration curve which is validated by use of RJava(t2) from a pulsed interference and reference channel output. Signal, interference and reference sources are pulsed at a frequency which is sufficiently fast so that a given molecule of M or MJ will not pass in and out of the liquid sampling matrix within the pulsing frequency.
    Type: Grant
    Filed: July 8, 2017
    Date of Patent: November 21, 2017
    Assignee: AIRWARE, INC.
    Inventors: Jacob Y Wong, Thomas Campbell
  • Publication number: 20170265787
    Abstract: Two coherent narrow bandwidth infrared beams, the Signal and the Reference, are incident at an angle and at high frequency sequentially and alternately at the same spot of a whole blood/body tissues sample. The Signal beam has a center wavelength which falls within an absorption line of glucose in whole blood (e.g. 1.409?). The Reference beam has a center wavelength which does not coincide with any known absorption lines of glucose in whole blood (e.g. 1,278?). Radiation emitted from the spot at which the beams penetrate into the sample and subsequently emanate from it after multiple scattering and spurious absorption effects is collected by a lens onto an infrared detector. The ratio of the voltage detected from the emerging Signal beam over that of the Reference beam is processed to yield the value of glucose concentration in the whole blood/body tissue sample.
    Type: Application
    Filed: March 21, 2016
    Publication date: September 21, 2017
    Applicant: Airware, Inc.
    Inventor: Jacob Y Wong
  • Patent number: 9726601
    Abstract: NDIR is used to determine a concentration of a chosen molecule M in a liquid sample which contains one or more interfering molecules MJ which absorb radiation at the signal wavelength used in the NDIR process by addition of an interference source. M is calculated by electronics which use Rave(t) from a pulsed signal and reference channel output and a calibration curve which is validated by use of RJave(t2) from a pulsed interference and reference channel output. Signal, interference and reference sources are pulsed at a frequency which is sufficiently fast so that a given molecule of M or MJ will not pass in and out of the liquid sampling matrix within the pulsing frequency.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: August 8, 2017
    Assignee: AIRWARE, INC.
    Inventors: Jacob Y Wong, Thomas Campbell
  • Patent number: 9678000
    Abstract: A concentration of glucose in a blood sample is determined through use of a signal channel output/reference channel ratio obtained by use of an NDIR absorption technique in which scattering noise attributable to the liquid phase is reduced by alternately and successively pulsing infrared radiation from signal and reference sources which are multiplexed and collimated into a pulsed beam directed through the sample space containing the liquid phase and the pulse frequency is sufficiently fast so that a given molecule of glucose will not pass in and out of the sample space within the pulse frequency.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: June 13, 2017
    Assignee: AIRWARE, INC.
    Inventors: Jacob Y Wong, Thomas Campbell
  • Patent number: 9606053
    Abstract: A concentration of a chosen molecule in a liquid phase in a sample space is determined through use of a signal channel output/reference channel ratio obtained by use of an NDIR absorption technique in which scattering noise attributable to the liquid phase is reduced by alternately and successively pulsing infrared radiation from signal and reference sources which are multiplexed and collimated into a pulsed beam directed through the sample space containing the liquid phase and the pulse frequency is sufficiently fast so that a given molecule of the chosen molecule will not pass in and out of the sample space within the pulse frequency.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: March 28, 2017
    Assignee: AIRWARE, INC.
    Inventors: Jacob Y Wong, Thomas Campbell
  • Patent number: 8917183
    Abstract: A miner's personal gas alarm can be mounted in a helmet powered by a rechargeable battery for a light or be self-contained. A visual indicator will generate an alarm when the concentration of gas detected by the gas sensor triggers an alarm condition. An audio alarm can also be generated by the alarm condition. The gas sensor is a non-dispersive infrared (“NDIR”) gas sensor. When the gas sensor detects methane, the alarm condition is triggered by either an abnormally high rate of increase of methane concentration level or by an elevated concentration of methane that is above approximately 500 ppm and substantially below a lower explosion limit of methane (e.g., approximately 10,000 ppm), and the gas sensor is recalibrated whenever the sample concentration of methane falls below an ambient threshold level of methane.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: December 23, 2014
    Assignee: Airware, Inc
    Inventor: Jacob Y Wong
  • Patent number: 8866085
    Abstract: A differential temperature source methodology for the design of a single beam NDIR gas sensor is advanced. This methodology uses a low and a high amplitude voltage cycle to drive a closely approximated Blackbody source for generating at different times two distinct detector outputs obtained from the same detector equipped the same narrow band pass filter but strategically designed for the detection of only a particular portion of the absorption band for the gas of interest. The ratio of the high amplitude cycle detector output over the low amplitude cycle detector output is used to calibrate such an NDIR gas sensor after it is normalized by a similar ratio when there is no target gas present in the sample chamber.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: October 21, 2014
    Assignee: Airware, Inc
    Inventor: Jacob Y Wong
  • Patent number: 8833369
    Abstract: A nasal air filtration device includes a pair of either planar or concave-convex filters, a support structure incorporating a pair of generally annular bases or sleeves for supporting the filters, and a bridge that couples the bases or sleeves to maintain them in a desired spaced-apart relation and to determine a desired angular relationship. The support structure is insertable into the nasal cavities to position the filters within corresponding nasal cavities. Flexible rims maintain the support structure and the filters in spaced-apart relation to the surrounding nasal wall. The filters may be placed within the bases at an angle with respect to the walls of the bases. Also, the filtration device may be flesh tone in color, thereby blending with the skin tone of the user. In some embodiments, a post structure is supplied for supplying a scent or aroma to the wearer.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: September 16, 2014
    Assignee: AirWare, Inc.
    Inventors: David M. Dolezal, John D. Wilder, Daniel M. Gelfman
  • Patent number: 8729475
    Abstract: An Absorption Biased (AB) methodology for NDIR gas sensors is used with a single infrared source and a detector to detect a single gas of interest by using a motion device to change the path length between that of the signal and reference channels. As in the case of the AB designed NDIR gas sensor, the ratio of the output of the Signal channel, measured during location arrangement X, over that of the Reference channel, measured during location arrangement Y, will be used to process the gas measurement. Multiple gases of interest can be detected by using one detector to detect multiple gases and/or by locating a second detector to detect multiple gases more distant from the source than the first detector, thereby creating longer path lengths for the second detector.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: May 20, 2014
    Assignee: Airware, Inc.
    Inventor: Jacob Y Wong
  • Patent number: 8424526
    Abstract: A holder for a nasal air filtration device or dilation device. A holder for a nasal device may be a thin, generally “Z” or “S” shaped device that holds a nasal device in a substantially secure and stable position. Each of a nasal device's nasal bases can be placed or secured on a placement limb of the holder while a connecting member of the nasal device can be secured on the opposite side of the holder from where the nasal bases are positioned along a vertical portion of the holder relative to the placement limbs. There may be securing notches in the holder that help secure a nasal device at generally the point where the bases of the nasal device attach to the connecting member of the nasal device. The notches may allow a nasal device to be securely attached to the holder.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: April 23, 2013
    Assignee: AirWare, Inc.
    Inventor: David M. Dolezal