Patents Assigned to Akston Biosciences Corporation
  • Patent number: 11919935
    Abstract: The present disclosure provides recombinantly manufactured ultra-long acting insulin-Fc fusion proteins for use in treating canine diabetes. The insulin-Fc fusion proteins comprise an insulin polypeptide linked via a peptide linker to an Fc-fragment of canine origin. Based on the results obtained, creating a treatment that is amenable to low cost manufacturing, exhibits sufficient in vivo bioactivity, displays extended duration of bioactivity, does not induce anti-drug antibodies, and substantially retains is potency over multiple administrations, requires a non-obvious combination of insulin polypeptide, peptide linkers, and species-specific Fc fragment, in addition to selective mutations on one or more of these components. Exemplary ultra-long acting insulin-Fc fusion proteins, polynucleotides encoding these insulin-Fc fusion proteins, and pharmaceutical formulations of exemplary insulin-Fc fusion proteins are provided, in addition to methods of use and preparation.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: March 5, 2024
    Assignee: Akston Biosciences Corporation
    Inventors: Thomas M. Lancaster, Todd C. Zion
  • Patent number: 11814418
    Abstract: The present disclosure relates to compositions of insulin-Fc fusion proteins and their use to treat feline diabetes.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: November 14, 2023
    Assignee: Akston Biosciences Corporation
    Inventors: Thomas M. Lancaster, Todd C. Zion
  • Patent number: 11773151
    Abstract: The present disclosure provides recombinantly manufactured ultra-long acting insulin-Fc fusion proteins for use in treating canine and feline diabetes. The insulin-Fc fusion proteins comprise an insulin polypeptide linked via a peptide linker to an Fc-fragment of canine or feline origin. Based on the results obtained, creating a treatment that is amenable to low cost manufacturing, exhibits sufficient in vivo bioactivity, displays extended duration of bioactivity, does not induce anti-drug antibodies, and substantially retains is potency over multiple administrations, requires a non-obvious combination of insulin polypeptide, peptide linkers, and species-specific Fc fragment, in addition to selective mutations on one or more of these components. Exemplary ultra-long acting insulin-Fc fusion proteins, polynucleotides encoding these insulin-Fc fusion proteins, and pharmaceutical formulations of exemplary insulin-Fc fusion proteins are provided, in addition to methods of use and preparation.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: October 3, 2023
    Assignee: Akston Biosciences Corporation
    Inventors: Thomas M. Lancaster, Todd C. Zion
  • Patent number: 11707517
    Abstract: The present disclosure provides recombinantly manufactured fusion proteins comprising a SARS-CoV-2 Receptor Binding Domain (SARS-CoV-2-RBD) fragment or an analog thereof linked to a human Fc fragment for use in relation to the 2019 Novel Coronavirus (COVID-19). Embodiments include the administration of the fusion proteins to patients that have recovered from COVID-19 as a booster vaccination, to antibody naïve patients to produce antibodies to the SARS-CoV-2 virus to enable the patients to become convalescent plasma donors, to patients who have been infected by the SARS-CoV-2 virus and have contracted COVID-19 in order to limit the scope of the infection and ameliorate the disease, and as a prophylactic COVID-19 vaccine. Exemplary Fc fusion proteins and pharmaceutical formulations of exemplary Fc fusion proteins are provided, in addition to methods of use and preparation.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: July 25, 2023
    Assignee: Akston Biosciences Corporation
    Inventors: Todd C. Zion, Thomas M. Lancaster, Thillainayagam Sathiyaseelan, Kexin Huang
  • Patent number: 11673934
    Abstract: The present disclosure provides recombinantly manufactured ultra-long acting insulin-Fc fusion proteins for use in treating canine and feline diabetes. The insulin-Fc fusion proteins comprise an insulin polypeptide linked via a peptide linker to an Fc-fragment of canine or feline origin. Based on the results obtained, creating a treatment that is amenable to low cost manufacturing, exhibits sufficient in vivo bioactivity, displays extended duration of bioactivity, does not induce anti-drug antibodies, and substantially retains is potency over multiple administrations, requires a non-obvious combination of insulin polypeptide, peptide linkers, and species-specific Fc fragment, in addition to selective mutations on one or more of these components. Exemplary ultra-long acting insulin-Fc fusion proteins, polynucleotides encoding these insulin-Fc fusion proteins, and pharmaceutical formulations of exemplary insulin-Fc fusion proteins are provided, in addition to methods of use and preparation.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: June 13, 2023
    Assignee: Akston Biosciences Corporation
    Inventors: Thomas M. Lancaster, Todd C. Zion
  • Patent number: 11667689
    Abstract: The present disclosure relates to compositions of fusion proteins, e.g., insulin-Fc fusion proteins, and their use to treat cancer cells and cancer tumors.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: June 6, 2023
    Assignee: Akston Biosciences Corporation
    Inventors: Todd C. Zion, Thomas M. Lancaster
  • Patent number: 11555058
    Abstract: The present disclosure provides cells engineered to express recombinantly manufactured ultra-long acting insulin-Fc fusion proteins for use in treating diabetes. The insulin-Fc fusion proteins comprise an insulin polypeptide linked via a peptide linker to an Fc-fragment of human origin. Exemplary ultra-long acting insulin-Fc fusion proteins, cells engineered to express the fusion proteins, polynucleotides encoding these insulin-Fc fusion proteins, and pharmaceutical formulations of exemplary insulin-Fc fusion proteins are provided, in addition to methods of use and preparation.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: January 17, 2023
    Assignee: Akston Biosciences Corporation
    Inventors: Thomas M. Lancaster, Todd C. Zion
  • Patent number: 11359001
    Abstract: The present disclosure relates generally to compositions of insulin-Fc (e.g., proinsulin-Fc) fusion proteins and their use to treat autoimmune disease, e.g., autoimmune diabetes, e.g., Type 1 diabetes.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: June 14, 2022
    Assignee: Akston Biosciences Corporation
    Inventors: Thomas M. Lancaster, Todd C. Zion, Thillainayagam Sathiyaseelan, Sylaja Murikipudi
  • Patent number: 11352407
    Abstract: The present disclosure provides recombinantly manufactured ultra-long acting insulin-Fc fusion proteins for use in treating diabetes. The insulin-Fc fusion proteins comprise an insulin polypeptide linked via a peptide linker to an Fc-fragment of human origin. Exemplary ultra-long acting insulin-Fc fusion proteins, polynucleotides encoding these insulin-Fc fusion proteins, and pharmaceutical formulations of exemplary insulin-Fc fusion proteins are provided.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: June 7, 2022
    Assignee: Akston Biosciences Corporation
    Inventors: Thomas M. Lancaster, Todd C. Zion
  • Patent number: 11267862
    Abstract: The present disclosure provides recombinantly manufactured ultra-long acting insulin-Fc fusion proteins for use in treating canine and feline diabetes. The insulin-Fc fusion proteins comprise an insulin polypeptide linked via a peptide linker to an Fc-fragment of canine or feline origin. Based on the results obtained, creating a treatment that is amenable to low cost manufacturing, exhibits sufficient in vivo bioactivity, displays extended duration of bioactivity, does not induce anti-drug antibodies, and substantially retains is potency over multiple administrations, requires a non-obvious combination of insulin polypeptide, peptide linkers, and species-specific Fc fragment, in addition to selective mutations on one or more of these components. Exemplary ultra-long acting insulin-Fc fusion proteins, polynucleotides encoding these insulin-Fc fusion proteins, and pharmaceutical formulations of exemplary insulin-Fc fusion proteins are provided, in addition to methods of use and preparation.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: March 8, 2022
    Assignee: AKSTON BIOSCIENCES CORPORATION
    Inventors: Thomas M. Lancaster, Todd C. Zion
  • Patent number: 11261229
    Abstract: The present disclosure provides recombinantly manufactured ultra-long acting insulin-Fc fusion proteins for use in treating canine and feline diabetes. The insulin-Fc fusion proteins comprise an insulin polypeptide linked via a peptide linker to an Fc-fragment of canine or feline origin. Based on the results obtained, creating a treatment that is amenable to low cost manufacturing, exhibits sufficient in vivo bioactivity, displays extended duration of bioactivity, does not induce anti-drug antibodies, and substantially retains is potency over multiple administrations, requires a non-obvious combination of insulin polypeptide, peptide linkers, and species-specific Fc fragment, in addition to selective mutations on one or more of these components. Exemplary ultra-long acting insulin-Fc fusion proteins, polynucleotides encoding these insulin-Fc fusion proteins, and pharmaceutical formulations of exemplary insulin-Fc fusion proteins are provided, in addition to methods of use and preparation.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: March 1, 2022
    Assignee: AKSTON BIOSCIENCES CORPORATION
    Inventors: Thomas M. Lancaster, Todd C. Zion
  • Patent number: 11213581
    Abstract: The present disclosure provides recombinantly manufactured fusion proteins comprising a SARS-CoV-2 Receptor Binding Domain (SARS-CoV-2-RBD) fragment or an analog thereof linked to a human Fc fragment for use in relation to the 2019 Novel Coronavirus (COVID-19). Embodiments include the administration of the fusion proteins to patients that have recovered from COVID-19 as a booster vaccination, to antibody naïve patients to produce antibodies to the SARS-CoV-2 virus to enable the patients to become convalescent plasma donors, to patients who have been infected by the SARS-CoV-2 virus and have contracted COVID-19 in order to limit the scope of the infection and ameliorate the disease, and as a prophylactic COVID-19 vaccine. Exemplary Fc fusion proteins and pharmaceutical formulations of exemplary Fc fusion proteins are provided, in addition to methods of use and preparation.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: January 4, 2022
    Assignee: Akston Biosciences Corporation
    Inventors: Todd C. Zion, Thomas M. Lancaster, Thillainayagam Sathiyaseelan, Kexin Huang
  • Patent number: 11198719
    Abstract: The present disclosure relates to compositions of insulin-Fc fusion proteins and their use to treat diabetes.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: December 14, 2021
    Assignee: Akston Biosciences Corporation
    Inventors: Todd C. Zion, Thomas M. Lancaster
  • Patent number: 11186623
    Abstract: The present disclosure provides recombinantly manufactured ultra-long acting insulin-Fc fusion proteins for use in treating canine diabetes. The insulin-Fc fusion proteins comprise an insulin polypeptide linked via a peptide linker to an Fc-fragment of canine origin. Based on the results obtained, creating a treatment that is amenable to low cost manufacturing, exhibits sufficient in vivo bioactivity, displays extended duration of bioactivity, does not induce anti-drug antibodies, and substantially retains is potency over multiple administrations, requires a non-obvious combination of insulin polypeptide, peptide linkers, and species-specific Fc fragment, in addition to selective mutations on one or more of these components. Exemplary ultra-long acting insulin-Fc fusion proteins, polynucleotides encoding these insulin-Fc fusion proteins, and pharmaceutical formulations of exemplary insulin-Fc fusion proteins are provided, in addition to methods of use and preparation.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: November 30, 2021
    Assignee: Akston Bioscience Corporation
    Inventors: Thomas M. Lancaster, Todd C. Zion
  • Publication number: 20210309709
    Abstract: The present disclosure provides recombinantly manufactured ultra-long acting insulin-Fc fusion proteins for use in treating diabetes. The insulin-Fc fusion proteins comprise an insulin polypeptide linked via a peptide linker to an Fc-fragment of human origin. Based on the results obtained, creating a treatment that is amenable to low cost manufacturing, exhibits sufficient in vivo bioactivity, displays extended duration of bioactivity, and does not exhibit immunogenicity requires a non-obvious combination of insulin polypeptide, peptide linkers, and Fc fragment, in addition to selective mutations on one or more of these components. Exemplary ultra-long acting insulin-Fc fusion proteins, polynucleotides encoding these insulin-Fc fusion proteins, and pharmaceutical formulations of exemplary insulin-Fc fusion proteins are provided, in addition to methods of use and preparation.
    Type: Application
    Filed: December 7, 2020
    Publication date: October 7, 2021
    Applicant: Akston Biosciences Corporation
    Inventors: Thomas M. Lancaster, Todd C. Zion
  • Publication number: 20210300983
    Abstract: The present disclosure provides recombinantly manufactured ultra-long acting insulin-Fc fusion proteins for use in treating canine diabetes. The insulin-Fc fusion proteins comprise an insulin polypeptide linked via a peptide linker to an Fc-fragment of canine origin. Based on the results obtained, creating a treatment that is amenable to low cost manufacturing, exhibits sufficient in vivo bioactivity, displays extended duration of bioactivity, does not induce anti-drug antibodies, and substantially retains is potency over multiple administrations, requires a non-obvious combination of insulin polypeptide, peptide linkers, and species-specific Fc fragment, in addition to selective mutations on one or more of these components. Exemplary ultra-long acting insulin-Fc fusion proteins, polynucleotides encoding these insulin-Fc fusion proteins, and pharmaceutical formulations of exemplary insulin-Fc fusion proteins are provided, in addition to methods of use and preparation.
    Type: Application
    Filed: December 28, 2020
    Publication date: September 30, 2021
    Applicant: Akston Biosciences Corporation
    Inventors: Thomas M. Lancaster, Todd C. Zion
  • Patent number: 10961294
    Abstract: The present disclosure provides recombinantly manufactured ultra-long acting insulin-Fc fusion proteins for use in treating canine and feline diabetes. The insulin-Fc fusion proteins comprise an insulin polypeptide linked via a peptide linker to an Fc-fragment of canine or feline origin. Based on the results obtained, creating a treatment that is amenable to low cost manufacturing, exhibits sufficient in vivo bioactivity, displays extended duration of bioactivity, does not induce anti-drug antibodies, and substantially retains is potency over multiple administrations, requires a non-obvious combination of insulin polypeptide, peptide linkers, and species-specific Fc fragment, in addition to selective mutations on one or more of these components. Exemplary ultra-long acting insulin-Fc fusion proteins, polynucleotides encoding these insulin-Fc fusion proteins, and pharmaceutical formulations of exemplary insulin-Fc fusion proteins are provided, in addition to methods of use and preparation.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: March 30, 2021
    Assignee: Akston Biosciences Corporation
    Inventors: Thomas M. Lancaster, Todd C. Zion
  • Patent number: 10947292
    Abstract: The present disclosure provides recombinantly manufactured ultra-long acting insulin-Fc fusion proteins for use in treating canine and feline diabetes. The insulin-Fc fusion proteins comprise an insulin polypeptide linked via a peptide linker to an Fc-fragment of canine or feline origin. Based on the results obtained, creating a treatment that is amenable to low cost manufacturing, exhibits sufficient in vivo bioactivity, displays extended duration of bioactivity, does not induce anti-drug antibodies, and substantially retains is potency over multiple administrations, requires a non-obvious combination of insulin polypeptide, peptide linkers, and species-specific Fc fragment, in addition to selective mutations on one or more of these components. Exemplary ultra-long acting insulin-Fc fusion proteins, polynucleotides encoding these insulin-Fc fusion proteins, and pharmaceutical formulations of exemplary insulin-Fc fusion proteins are provided, in addition to methods of use and preparation.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: March 16, 2021
    Assignee: Akston Biosciences Corporation
    Inventors: Thomas M. Lancaster, Todd C. Zion
  • Publication number: 20200407414
    Abstract: The present disclosure provides recombinantly manufactured ultra-long acting insulin-Fc fusion proteins for use in treating canine and feline diabetes. The insulin-Fc fusion proteins comprise an insulin polypeptide linked via a peptide linker to an Fc-fragment of canine or feline origin. Based on the results obtained, creating a treatment that is amenable to low cost manufacturing, exhibits sufficient in vivo bioactivity, displays extended duration of bioactivity, does not induce anti-drug antibodies, and substantially retains is potency over multiple administrations, requires a non-obvious combination of insulin polypeptide, peptide linkers, and species-specific Fc fragment, in addition to selective mutations on one or more of these components. Exemplary ultra-long acting insulin-Fc fusion proteins, polynucleotides encoding these insulin-Fc fusion proteins, and pharmaceutical formulations of exemplary insulin-Fc fusion proteins are provided, in addition to methods of use and preparation.
    Type: Application
    Filed: September 11, 2020
    Publication date: December 31, 2020
    Applicant: AKSTON BIOSCIENCES CORPORATION
    Inventors: THOMAS M. LANCATER, TODD C. ZION
  • Publication number: 20200407413
    Abstract: The present disclosure provides recombinantly manufactured ultra-long acting insulin-Fc fusion proteins for use in treating canine and feline diabetes. The insulin-Fc fusion proteins comprise an insulin polypeptide linked via a peptide linker to an Fc-fragment of canine or feline origin. Based on the results obtained, creating a treatment that is amenable to low cost manufacturing, exhibits sufficient in vivo bioactivity, displays extended duration of bioactivity, does not induce anti-drug antibodies, and substantially retains is potency over multiple administrations, requires a non-obvious combination of insulin polypeptide, peptide linkers, and species-specific Fc fragment, in addition to selective mutations on one or more of these components. Exemplary ultra-long acting insulin-Fc fusion proteins, polynucleotides encoding these insulin-Fc fusion proteins, and pharmaceutical formulations of exemplary insulin-Fc fusion proteins are provided, in addition to methods of use and preparation.
    Type: Application
    Filed: September 11, 2020
    Publication date: December 31, 2020
    Applicant: AKSTON BIOSCIENCES CORPORATION
    Inventors: THOMAS M. LANCASTER, TODD C. ZION