Abstract: A microfabricated optical wave plate comprises a reflective polarizer and a mirror separated by a fixed or variable distance. The wave plate imparts a relative phase delay on polarization components of incident light, thereby transforming the overall polarization of the light.
Abstract: Monolithic IC/MEMS processes are disclosed in which high-stress silicon nitride is used as a mechanical material while amorphous silicon serves as a sacrificial layer. Electronic circuits and micro-electromechanical devices are built on separate areas of a single wafer. The sequence of IC and MEMS process steps is designed to prevent alteration of partially completed circuits and devices by subsequent high process temperatures.
Abstract: Surface emitting laser arrays with intra-cavity harmonic generation are coupled to an optical system that extracts harmonic light in both directions from an intra-cavity nonlinear optical material in such a way that the focusing properties of the light beams are matched.
Abstract: A system and method for increasing contrast in displays using micromechanical light modulators. Contrast is enhanced by an optical system that uses polarization to discriminate unmodulated light. Contrast obtained from polarization sensitive components of an optical system has a multiplicative effect on contrast already available.
Abstract: A phase plate and lens modify light beams emitted by an array of lasers to form an efficient illumination source for a MEMS light modulator array. The phase of the electric field emitted by the lasers is modified such that the after passing through a lens the beam profile at the lens focal plane has an approximately rectangular shape appropriate for illuminating a light modulator array. The phase plate may be constructed from a glass plate with rectangular notches etched in it or with rectangular ridges formed on it. Furthermore a light source, such as a laser, may be coupled to an adiabatically tapered optical waveguide in which a phase adjusting block is introduced in analogy to notches in a bulk phase plate. Phase modified light beams output from the waveguide system have similar focusing properties to those passing through a bulk phase plate.
Abstract: Micro-electromechanical light modulators are combined with anamorphic and contrast enhancing optical elements to form optical display engines. Linear MEMS arrays are suitable for the étendue of low divergence light sources while handling high optical power for brightness. The output of an optical engine is a line image which may be scanned to form a two-dimensional image.
Abstract: Multi-point confocal microscopy, bright field microscope imaging, computer-controlled positioning stages, and an algorithm for automated leveling are the basis for a powerful but simple tool for aligning stamps used in precise pattern transfer to substrates. The system is relatively inexpensive and brings a capability similar to that of a photolithographic mask aligner to the world of elastomeric-stamp-based lithography. Alignment of the stamp and substrate is possible without contact between the two before printing.
Abstract: A differential interferometric light modulator and image display system comprises a polarizing beam splitter, a polarization displacement device and a linear array of MEMS optical phase shifting devices to modulate a line image. The polarizing beam splitter acts as both the polarizer and the analyzer in an interferometer. The polarization displacement device divides polarized light from a polarizer into orthogonal polarization components which propagate parallel to one another. The MEMS optical phase shifting device array imparts a relative phase shift onto the polarization components and returns them to the polarization displacement device where they are recombined and sent to the analyzer. The MEMS optical phase shifting devices are electronically controlled and convert electronic image data into actual light modulation.
Abstract: A light modulator incorporates a polarization sensitive prism and a novel MEMS ribbon device to impart a relative phase shift to polarization components of an incident light beam. A linear array of phase shifting elements in the MEMS device creates a linear image which is scanned to form a two dimensional scene. Alternatively the deflection of each cantilever in a linear array of atomic force microscope cantilevers may be measured simultaneously.
Abstract: A light modulator incorporates a polarization sensitive prism and a novel MEMS ribbon device to impart a relative phase shift to polarization components of an incident light beam. A linear array of phase shifting elements in the MEMS device creates a linear image which is scanned to form a two dimensional scene. Alternatively the deflection of each cantilever in a linear array of atomic force microscope cantilevers may be measured simultaneously.