Abstract: A magnetic field sensor includes a phase-locked loop to receive a measured magnetic field signal formed from sensing element output signals of a plurality of magnetic field sensing elements in response to a magnetic field. The phase-locked loop is configured to generate an angle signal having a value indicative of the angle of the magnetic field. Associated methods are also described.
Abstract: A ground fault detection circuit is configured to detect a ground fault in a circuit or system that has more than one ground reference. In an embodiment, an electronic circuit includes a first circuit coupled to a first ground node. The first ground node is coupled to a first ground reference. The electronic circuit also includes a second circuit coupled to a second ground node. The second ground node is coupled to a second ground reference. The ground fault detection circuit is configured to detect an open circuit between the first ground node and the first ground reference or between the second ground node and the second ground reference by comparing a voltage at the first ground node to a voltage at the second ground reference or comparing a voltage at the second ground node to a voltage at the first ground reference.
Abstract: Methods and apparatus for an integrated circuit that includes a supply voltage transient detection module to activate a hold signal that causes the output to remain in its present state. In one embodiment, the output remains in that state until the supply voltage returns to a normal operating range and the hold signal transitions to an inactive state.
Type:
Grant
Filed:
January 5, 2012
Date of Patent:
December 13, 2016
Assignee:
ALLEGRO MICROSYSTEMS, LLC
Inventors:
Jeff Eagen, Devon Fernandez, P. Karl Scheller
Abstract: A spin valve magnetoresistance element has an even number of free layer structures for which half has an antiferromagnetic coupling and the other half has a ferromagnetic coupling with respect to associated pinned layers. The different couplings are the result of an even number different spacer layers having respective different thicknesses.
Type:
Application
Filed:
May 26, 2016
Publication date:
December 8, 2016
Applicants:
Allegro Microsystems, LLC, COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
Inventors:
Claude Fermon, Paolo Campiglio, Bryan Cadugan
Abstract: A magnetic field sensor that provides target speed and direction detection that is independent of sensor-to-target orientation includes at least three differential channels, each responsive to a pair of magnetic field sensing elements to generate a respective magnetic field channel signal. A combining element is configured to generate a combined signal based on the first, second, and third magnetic field channel, signals and control circuitry responsive to the combined signal and to at least one of the first, second, and third magnetic field channel signals generates a sensor output signal that indicative of target speed and direction.
Abstract: An integrated circuit sensor includes circuitry and methods for generating a high speed delay fault test clock signal. A trimmable oscillator generates a master clock signal for use by an output protocol processor to provide the sensor output signal. A fault test clock signal generator is responsive to the master clock signal and to a test trigger signal for generating the test clock signal having a launch pulse and a capture pulse, each having edges substantially coincident with like edges of pulses of the master clock signal and a spacing between launch and capture pulses established by the trimmable master clock signal.
Type:
Grant
Filed:
November 7, 2011
Date of Patent:
December 6, 2016
Assignee:
Allegro Microsystems, LLC
Inventors:
Glenn A. Forrest, Aaron Cook, Dana Briere, Devon Fernandez, Naota Nakayama
Abstract: A joystick assembly for use with a device including a joystick surface and a first magnet having north and south magnetic poles includes a second magnet having north and south magnetic poles and a movable elongated shaft having first and second opposing ends arranged along a major axis of the shaft. The first end of the shaft is coupled to the second magnet such that movement of the shaft results in movement of the second magnet relative to the first magnet such that a line between centers of the north and south magnetic poles of the second magnet is movable relative to a line between the north and south magnetic poles of the first magnet. An attraction of the second magnet to the first magnet results in a restoring force upon the shaft, and the shaft and the second magnet are removable from the joystick surface.
Type:
Application
Filed:
August 1, 2016
Publication date:
November 17, 2016
Applicant:
ALLEGRO MICROSYSTEMS, LLC
Inventors:
Ali Husain Yusuf Sirohiwala, William P. Taylor, Katherine Shamberger
Abstract: An isolation circuit is coupled between motor driver half bridge circuits and an electric motor. A motor controller circuit supplies motor drive signals to the motor driver half bridge circuits. The isolation circuit includes transistors coupled in series with the motor windings. Low to medium power diodes are coupled between a reference voltage source and control terminals of the transistors.
Type:
Grant
Filed:
April 3, 2015
Date of Patent:
November 15, 2016
Assignee:
Allegro MicroSystems, LLC
Inventors:
Edward Chappell, Robert D. Christie, James McIntosh, Peter Morris
Abstract: A magnetic field sensor includes a lead frame having a plurality of leads, at least two of which have a connection portion and a die attach portion. A semiconductor die is attached to the die attach portion of the at least two leads. In some embodiments, at least one passive component is attached to the die attach portion of at least two leads.
Type:
Grant
Filed:
January 25, 2013
Date of Patent:
November 15, 2016
Assignee:
Allegro Microsystems, LLC
Inventors:
Paul David, William P. Taylor, P. Karl Scheller, Ravi Vig, Andreas P. Friedrich
Abstract: A circuit includes a current source having at least first terminal and a second, control terminal. The current source is configured to receive a current control signal at the control terminal and in response thereto generates a first current signal at the first terminal. The current control signal controls a current level of the first current signal. The circuit also includes at least one sensing element responsive to one or more sense parameters and having an input adapted to couple to the first terminal of said current source. The sensing element is configured to receive one or more current signals comprising at least the first current signal and in response thereto generates a sensed output signal at an output thereof. A corresponding method for operating the circuit is also provided.
Type:
Application
Filed:
April 27, 2015
Publication date:
October 27, 2016
Applicant:
Allegro Microsystems, LLC
Inventors:
Jay M. Towne, P. Karl Scheller, Eric G. Shoemaker
Abstract: A circuit to detect a movement of an object provides a threshold selection module or a peak identifier module that uses one or more threshold signals identified prior to a present cycle of magnetic field signal in order to establish a threshold signal used for a present cycle of the magnetic field signal. A method associated with the circuit is also described. The circuit and method can be tailored to store values associated with a least common multiple of a set of possible quantities of detectable features on target objects.
Type:
Grant
Filed:
August 6, 2014
Date of Patent:
October 25, 2016
Assignee:
Allegro MicroSystems, LLC
Inventors:
Devon Fernandez, Michael Morris, William P. Taylor, P. Karl Scheller
Abstract: Method and apparatus for a current sensing device including a magnetoresistive magnetic field sensing element positioned with respect to a shaped conductor such that an applied field generated by current through the shaped conductor forms an offset angle theta defined by the applied field and a field of a pinning layer of the magnetoresistive element. The offset angle increases a linearity of the device output for current in the shaped conductor flowing in a first direction. A further sensor can increase linearity in the opposite direction.
Abstract: An electronic circuit can be disposed upon a semiconductor substrate. An epitaxial layer can be disposed over the semiconductor substrate. The electronic circuit can include a Hall effect element, at least a portion of the Hall effect element disposed in the epitaxial layer. The electronic circuit can further include a current generator configured to generate a drive current that passes through the Hall effect element. The current generator can include a resistor disposed in the epitaxial layer and having characteristics such that a resistance of the resistor can vary with a stress of the semiconductor substrate, resulting in changes of the drive current, to compensate for variations in the sensitivity of the Hall effect element with the stress of the substrate.
Abstract: In one aspect, a Hall Effect sensing element includes a Hall plate having a thickness less than about 100 nanometers an adhesion layer directly in contact with the Hall plate and having a thickness in a range about 0.1 nanometers to 5 nanometers. In another aspect, a sensor includes a Hall Effect sensing element. The Hall Effect sensing element includes a substrate that includes one of a semiconductor material or an insulator material, an insulation layer in direct contact with the substrate, an adhesion layer having a thickness in a range of about 0.1 nanometers to 5 nanometers and in direct contact with the insulation layer and a Hall plate in direct contact with the adhesion layer and having a thickness less than about 100 nanometers.
Abstract: Described embodiments provide a magnetic field sensor has a circular vertical Hall (CVH) sensing element with a plurality of vertical Hall elements disposed over a common implant region in a substrate. The magnetic field sensor generates output signals responsive to a magnetic field generated by a multi-pole magnet having a plurality of north poles and also a plurality of south poles. An angle sensor generates an angle signal representative of an angle of a direction component of the magnetic field. A pole pair counter generates a count signal representative of a count of a number of the pole pairs of the multi-pole magnet that move past the CVH sensing element. An angle interpolation module generates a reconstructed angle signal representative of an angular position of the multi-pole magnet relative to the CVH sensing element based upon the count signal and the angle signal. Corresponding methods are also described.
Abstract: An electronic circuit includes semiconductor substrate having a first doping type and a reference terminal coupled to the semiconductor substrate. A tub area having a second doping type is formed in the semiconductor substrate. A well area having the first doping type is formed within the tub area. A driver circuit comprising a transistor is formed within the well area and has an output terminal. A control circuit is coupled to the driver circuit for controlling the driver circuit. A second transistor is within the well area and coupled in series between the driver circuit and the output terminal, the second transistor having a first terminal coupled to the driver circuit and a second terminal coupled to the output terminal. A biasing circuit is coupled to a gate terminal of the second transistor and configured to bias the transistor to a conducting state.
Type:
Application
Filed:
May 23, 2016
Publication date:
September 29, 2016
Applicant:
Allegro Microsystems, LLC
Inventors:
Richard B. Cooper, Maxim Klebanov, Washington Lamar, Devon Fernandez
Abstract: A current sensor integrated circuit includes a lead frame having a primary conductor and at least one secondary lead, a semiconductor die disposed adjacent to the primary conductor, an insulation structure disposed between the primary conductor and the semiconductor die, and a non-conductive insulative material enclosing the semiconductor die, the insulation structure, a first portion of the primary conductor, and a first portion of the at least one secondary lead to form a package. The first portion of the at least one secondary lead (between a first end proximal to the primary conductor and a second end proximal to the second, exposed portion of the at least one secondary lead) has a thickness that is less than a thickness of the second, exposed portion of the least one secondary lead. A distance between the second, exposed portion of the primary conductor and the second, exposed portion of the at least one secondary lead is at least 7.2 mm.
Abstract: In one aspect, a magnetic field sensor includes a chopper stabilized amplifier and a plurality of Hall-type elements in parallel and connected to the chopper stabilized amplifier. In another aspect, a magnetic field sensor includes a chopper stabilized amplifier and a plurality of Hall quad elements in parallel and connected to the chopper stabilized amplifier. In a further aspect, a current sensor has a bandwidth of 1 MHz and includes a chopper stabilized amplifier and a plurality of Hall quad elements, fabricated in silicon, in parallel and connected to the chopper stabilized amplifier.
Type:
Application
Filed:
March 27, 2015
Publication date:
September 29, 2016
Applicant:
ALLEGRO MICROSYSTEMS, LLC
Inventors:
David J. Haas, Michael Gaboury, Alexander Latham
Abstract: A magnetic field sensor with a plurality of magnetic field sensing elements is presented. The magnetic field sensor includes a sequences switches circuit to sequentially select from among the plurality of magnetic field signals. The magnetic field sensor further includes a memory device to store a plurality of potentiometer control values. Also included is a variable potentiometer to attenuate an offset of each one of the plurality of magnetic field signals by using a respective plurality of offset attenuation factors responsive to one or more of the plurality of potentiometer control values. A corresponding method is also described.
Abstract: In an embodiment, a circuit is configured to produce a magnetic field signal having a frequency spectrum. The circuit may also produce a temperature signal. A modulation circuit may modulate the temperature signal with a frequency outside the frequency spectrum of the magnetic field signal. The modulated signal and the magnetic field signal may be combined to produce a combined signal. A separation circuit may be configured to separate component signals from the combined signal. The separation circuit may include a first filter, which, when applied to the combined signal, produces a filtered signal; a modulation circuit configured to shift the data representing the temperature signal to a baseband frequency; and a second filter configured to separate the data representing the temperature signal from the combined signal.
Type:
Grant
Filed:
April 26, 2016
Date of Patent:
September 13, 2016
Assignee:
Allegro MicroSystems, LLC
Inventors:
Mathew Drouin, Devon Fernandez, William P. Taylor