Abstract: A method of forming a hydrocarbon product and a protonation product comprises introducing C2H6 to a positive electrode of an electrochemical cell comprising the positive electrode, a negative electrode, and a proton-conducting membrane between the positive electrode and the negative electrode. The proton-conducting membrane comprises an electrolyte material having an ionic conductivity greater than or equal to about 10?2 S/cm at one or more temperatures within a range of from about 150° C. to about 650° C. A potential difference is applied between the positive electrode and the negative electrode of the electrochemical cell to produce the hydrocarbon product and the protonation product. A C2H6 activation system and an electrochemical cell are also described.
Abstract: A Conductor on Molded Barrel (COMB) magnet assembly optimized for High Temperature Superconducting (HTS) materials. The magnet assembly comprises a magnetic coil(s) carried by a conductor support structure and configured in cosine-theta geometry. Created using additive manufacturing, the conductor support structure features a continuous cable channel that fittedly carries and positions elongated straight portion(s) of the magnetic coil(s) parallel to a magnetic axis. The conductor support structure may be cylindrically shaped and longitudinally bored, with the continuous cable channel comprising an outer channel portion (distal on the cylinder) and an inner channel portion (proximal on the cylinder). A transition hole that joins the outer channel portion and the inner channel portion allows a single magnetic coil to be wound along both the outer and inner surfaces of the conductor support structure.
Abstract: The present disclosure relates to a method that includes depositing a spalling layer onto a surface that includes a substrate, depositing a device comprising a III-V material onto the spalling layer, resulting in the forming of a stack, and dividing the stack substantially at a plane positioned within the spalling layer to form a first portion that includes the substrate and a second portion that includes the PV device, where the spalling layer includes a first layer configured to provide a compressive stress and a second layer configured to provide a tensile stress, the first layer and the second layer form an interface, the dividing occurs as result of the interface, and the compressive stress and the tensile stress are strain-balanced so that a total strain within the spalling layer is approximately zero.
Abstract: Apparatus and methods for deployment of fixtures. The apparatus may include a system for controlling deployed fixtures. The system may receive user commands different devices in different formats. The fixtures may be independently addressable. The fixtures may be magnetically supported by a fixture support. A brace may join two or more fixture supports without reducing space available to support fixtures. The brace may join a fixture support to a fixture support accessory. An accessory may include a variable-angle junction. The fixture may include articulating joints for controlling the direction of a beam. The fixture may include a lens having an electrically controllable beam spread angle. The fixture may be stowable in the fixture support. The fixture may be slidable along a cord to adjust a height of the fixture. The fixture may include an extendable ring. The system may coordinate motions of the fixtures to follow a target. The fixture may include an elongated board.
Abstract: The present disclosure relates to a composition that includes a first oxide having a phosphate, a ratio of Brønsted acid sites to Lewis acid sites between 0.05 and 1.00, and a total acidity between 50 ?mol/g and 300 ?mol/g, where the phosphate is at least one of a functional group covalently bonded to the first oxide and/or an anion ionically bonded to the first oxide.
Type:
Grant
Filed:
July 19, 2021
Date of Patent:
May 16, 2023
Assignee:
Alliance for Sustainable Energy, LLC
Inventors:
Glenn Richard Hafenstine, Derek Richard Vardon, Xiangchen Huo, Nabila Asem Huq
Abstract: A secondary reflector for receiving light from a plurality of primary reflectors that includes a reflecting surface having a length aligned along a first axis (z), where a cross-section of the reflecting surface in a plane perpendicular to the first axis (z) forms a curve comprising a concave section positioned between a first endpoint and a second endpoint, at least a portion of the concave section is accurately approximated by a polynomial equation, an aperture is formed by a straight line connecting the first endpoint to the second endpoint, and the concave section is configured to focus a plurality of beams of light passing through the aperture onto a focal point.
Abstract: A system and method for the treatment of invasive pests includes an irradiation device that can generate an electron beam that is applicable to a tree infected by an invasive pest, wherein the electron beam provides an in-situ treatment for the tree infected by the invasive pest by killing the invasive pest via electron beam irradiation. One or more temperature sensors can be used to track the internal temperature of a tree surrogate. A differential temperature difference tracked by temperature sensor can be used to ensure that a reduction in temperature of the tree is attributable to the electron beam rather than increase in heat.
Abstract: Methods and means for improving open enrollment and new hire enrollment and registration in insurance products are provided, and more specifically, methods and means for improved, more efficient methods for communicating updates regarding enrollment details and their registration in insurance products are provided.
Abstract: Methods for manufacturing an electrochemical sensor include forming at least one electrode by printing at least one conductive ink on a surface of at least one substrate. The conductive ink may comprise, e.g., a platinum-group metal, another transition-group metal with a high-temperature melting point, a conductive ceramic material, glass-like carbon, or a combination thereof. The electrochemical sensor may be free of another material over the at least one electrode. An electrochemical sensor, formed according to such methods, may be configured for use in harsh environments (e.g., a molten salt environment). Electrodes of the electrochemical sensor comprise conductive material formed from a printed, conductive ink. In some embodiments, at least a portion of the electrochemical sensor is free of silver, gold, copper, silicon, and polymer materials, such portion being that which is to be exposed to the harsh environment during use of the electrochemical sensor.
Type:
Grant
Filed:
April 3, 2020
Date of Patent:
April 25, 2023
Assignee:
Battelle Energy Alliance, LLC
Inventors:
Michael R. Shaltry, Prabhat K. Tripathy, David Estrada
Abstract: The disclosure relates to particle heaters for heating solid particles to store electrical energy as thermal energy. Thermal energy storage directly converts off-peak electricity into heat for thermal energy storage, which may be converted back to electricity, for example during peak-hour power generation. The particle heater is an integral part of an electro-thermal energy storage system, as it enables the conversion of electrical energy into thermal energy. As described herein, particle heater designs are described that provide efficient heating of solid particles in an efficient and compact configuration to achieve high energy density and low cost.
Type:
Grant
Filed:
July 14, 2021
Date of Patent:
April 18, 2023
Assignees:
Alliance for Sustainable Energy, LLC, Purdue Research Foundation
Inventors:
Zhiwen Ma, Jeffrey Clayton Gifford, Patrick Gordon Davenport, Dening Jia, Jason Schirck, Aaron Morris
Abstract: The present disclosure relates to a method for producing a metal carbide, where the method includes thermally treating a molecular precursor in an oxygen-free environment, such that the treating produces the metal carbide and the molecular precursor includes where M is the metal of the metal carbide, N* includes nitrogen or a nitrogen-containing functional group, and x is between zero and six, inclusively.
Type:
Grant
Filed:
March 23, 2021
Date of Patent:
April 18, 2023
Assignee:
Alliance for Sustainable Energy, LLC
Inventors:
Frederick G. Baddour, Anurag Kumar, Kurt Michael Van Allsburg, Daniel Ruddy, Susan E. Habas, Andrew Royappa, Brittney E. Petel, Claire Townsend Nimlos
Abstract: A Fast Faraday Cup includes a group of electrodes including a grounded electrode having a through hole and a collector electrode configured with a blind hole that functions a collector hole. The electrodes are configured to allow a beam (e.g., a non-relativistic beam) to fall onto the grounded electrode so that the through hole cuts a beamlet that flies into the collector hole and facilitates measurement of the longitudinal distribution of particle charge density in the beam. The diameters, depths, spacing and alignment of the collector hole and the through hole are controllable to enable the Fast Faraday day cup to operate with a fast response time (e.g., fine time resolution) and capture secondary particles.