Abstract: In a method for manufacturing a cable, a filling step S5 of filling a tube hole of a socket main body which is formed in a tubular shape and in which first end portions of wire rods are disposed with a mixture obtained by mixing a thermosetting resin into a preliminary mixture obtained by mixing ceramic particles and fly ash in advance is carried out.
Abstract: In a method for manufacturing a cable, a filling step S5 of filling a tube hole of a socket main body which is formed in a tubular shape and in which first end portions of wire rods are disposed with a mixture obtained by mixing a thermosetting resin into a preliminary mixture obtained by mixing ceramic particles and fly ash in advance is carried out.
Abstract: Provided is a highly versatile conductive metallic coating material which is free from the limitation related to a facility without handling complication, and which can maintain its anticorrosive action for a long period. Specifically provided is a conductive metallic coating material which has an organic resin component and a metal component containing aluminum and magnesium and which exhibits a sacrificial anticorrosive reaction on iron. A content ratio of the metal component and the organic resin component is desirably 98:2 to 80:20 in terms of weight ratio. The conductive metallic coating material according to the present invention is usable for preventing corrosion of a building structure or a civil engineering structure and for repairing a corrosion proof treated surface of an existing building structure or a civil engineering structure.