Abstract: A structure with an optically active layer embedded in a Si wafer, such that the outermost epitaxial layer exposed to the CMOS processing equipment is always Si or another CMOS-compatible material such as SiO2. Since the optoelectronic layer is completely surrounded by Si, the wafer is fully compatible with standard Si CMOS manufacturing. For wavelengths of light longer than the bandgap of Si (1.1 &mgr;m), Si is completely transparent and therefore optical signals can be transmitted between the embedded optoelectronic layer and an external waveguide using either normal incidence (through the Si substrate or top Si cap layer) or in-plane incidence (edge coupling).
Abstract: Structures and methods for fabricating high speed digital, analog, and combined digital/analog systems using planarized relaxed SiGe as the materials platform. The relaxed SiGe allows for a plethora of strained Si layers that possess enhanced electronic properties. By allowing the MOSFET channel to be either at the surface or buried, one can create high-speed digital and/or analog circuits. The planarization before the device epitaxial layers are deposited ensures a flat surface for state-of-the-art lithography. In accordance with one embodiment of the invention, there is provided a method of fabricating a semiconductor structure including providing a relaxed Si1−xGex layer on a substrate; planarizing said relaxed Si1−xGex layer; and depositing a device heterostructure on said planarized relaxed Si1−xGex layer including at least one strained layer.
Abstract: Transistors including a buried channel layer intermediate to a source and a drain and a surface layer intermediate to the buried layer and a gate are operated so as to cause current between the source and the drain to flow predominately through the buried channel layer by applying a back-bias voltage to the transistor. The back-bias voltage modulates a free charge carrier density distribution in the buried layer and in the surface layer.
Abstract: A semiconductor device and a method for fabricating a semiconductor device involve a semiconductor layer that includes a first material and a second material. The first and second materials can be silicon and germanium. A contact of the device has a portion proximal to the semiconductor layer and a portion distal to the semiconductor layer. The distal portion includes the first material and the second material. A metal layer formed adjacent to the relaxed semiconductor layer and adjacent to the distal portion of the contact is simultaneously reacted with the relaxed semiconductor layer and with the distal portion of the contact to provide metallic contact material.
Abstract: A semiconductor structure having a surface layer disposed over a substrate, the surface layer including strained silicon. A contact layer is disposed over a portion of the surface layer, the contact layer including a metal-semiconductor alloy. A bottommost boundary of the contact layer is disposed above a bottommost boundary of the surface layer.
Type:
Application
Filed:
June 7, 2002
Publication date:
December 11, 2003
Applicant:
AmberWave Systems Corporation
Inventors:
Anthony J. Lochtefeld, Thomas A. Langdo, Richard Westhoff
Abstract: A semiconductor structure having a substrate with a surface layer including strained silicon. The surface layer has a first region with a first thickness less than a second thickness of a second region. A gate dielectric layer is disposed over a portion of at least the first surface layer region.
Type:
Application
Filed:
June 7, 2002
Publication date:
December 11, 2003
Applicant:
AmberWave Systems Corporation
Inventors:
Matthew T. Currie, Anthony J. Lochtefeld, Eugene A. Fitzgerald
Abstract: A method of fabricating a CMOS inverter including providing a heterostructure having a Si substrate, a relaxed Si1-x Gex layer on the Si substrate, and a strained surface layer on said relaxed Si1-x Gex layer; and integrating a pMOSFET and an nMOSFET in said heterostructure, wherein the channel of said pMOSFET and the channel of the nMOSFET are formed in the strained surface layer. Another embodiment provides a method of fabricating an integrated circuit including providing a heterostructure having a Si substrate, a relaxed Si1-xGex layer on the Si substrate, and a strained layer on the relaxed Si1-x Gex layer; and forming a p transistor and an n transistor in the heterostructure, wherein the strained layer comprises the channel of the n transistor and the p transistor, and the n transistor and the p transistor are interconnected in a CMOS circuit.
Abstract: Structures and methods for fabricating high speed digital, analog, and combined digital/analog systems using planarized relaxed SiGe as the materials platform. The relaxed SiGe allows for a plethora of strained Si layers that possess enhanced electronic properties. By allowing the MOSFET channel to be either at the surface or buried, one can create high-speed digital and/or analog circuits. The planarization before the device epitaxial layers are deposited ensures a flat surface for state-of-the-art lithography.
Abstract: A structure and method of fabricating an optically active layer embedded in a Si wafer, such that the outermost epitaxial layer exposed to the CMOS processing equipment is always Si or another CMOS-compatible material such as SiO2. Since the optoelectronic layer is completely surrounded by Si, the wafer is fully compatible with standard Si CMOS manufacturing. For wavelengths of light longer than the bandgap of Si (1.1 &mgr;m), Si is completely transparent and therefore optical signals can be transmitted between the embedded optoelectronic layer and an external waveguide using either normal incidence (through the Si substrate or top Si cap layer) or in-plane incidence (edge coupling).
Abstract: A method of fabricating a semiconductor device including providing a semiconductor heterostructure, the heterostructure having a relaxed Si1-xGex layer on a substrate, a strained channel layer on the relaxed Si1-xGex layer, and a Si1-yGey layer; removing the Si1-yGey layer; and providing a dielectric layer. The dielectric layer includes a gate dielectric of a MISFET. In alternative embodiments, the heterostructure includes a SiGe spacer layer and a Si layer.
Type:
Application
Filed:
April 23, 2003
Publication date:
November 6, 2003
Applicant:
Amberwave Systems Corporation
Inventors:
Eugene A. Fitzgerald, Richard Hammond, Matthew Currie
Abstract: A semiconductor structure including a first substrate, and an epitaxial layer bonded to the substrate. The epitaxial layer has a threading dislocation density of less than 107cm−2 and an in-plane lattice constant that is different from that of the first substrate and a second substrate on which the epitaxial layer is fabricated. In another embodiment, there is provided a method of processing a semiconductor structure including providing a first substrate; providing a layered structure including a second substrate having an epitaxial layer provided thereon, the epitaxial layer having an in-plane lattice constant that is different from that of the first substrate and a threading dislocation density of less than 107 cm−2; bonding the first substrate to the layered structure; and removing the second substrate.
Abstract: A semiconductor structure including a first substrate, and an epitaxial layer bonded to the substrate. The epitaxial layer has a threading dislocation density of less than 107 cm−2 and an in-plane lattice constant that is different from that of the first substrate and a second substrate on which the epitaxial layer is fabricated. In another embodiment, there is provided a method of processing a semiconductor structure including providing a first substrate; providing a layered structure including a second substrate having an epitaxial layer provided thereon, the epitaxial layer having an in-plane lattice constant that is different from that of the first substrate and a threading dislocation density of less than 107 cm−2; bonding the first substrate to the layered structure; and removing the second substrate.
Abstract: A method of processing semiconductor materials and a corresponding semiconductor structure, including providing a virtual substrate of a GaAs epitaxial film on a Si substrate, and epitaxailly growing a relaxed graded layer of InxGal-xAs at a temperature ranging upwards from about 600° C. with a subsequent process for planarization of the InGaAs alloy.
Abstract: A method of fabricating a buried channel FET including providing a relaxed SiGe layer on a substrate, providing a channel layer on the relaxed SiGe layer, providing a SiGe cap layer on the channel layer, and ion implanting a dopant supply. The dopant supply can be ion implanted in either the SiGe cap layer or the relaxed SiGe layer. In another embodiment, there is provided a method of fabricating a circuit including providing at least one strained channel, enhancement mode FET, and at least one strained channel, depletion mode FET on a substrate, and ion implanting a dopant supply in the depletion mode FET.
Abstract: Structures and methods for fabricating high speed digital, analog, and combined digital/analog systems using planarized relaxed SiGe as the materials platform. The relaxed SiGe allows for a plethora of strained Si layers that possess enhanced electronic properties. By allowing the MOSFET channel to be either at the surface or buried, one can create high-speed digital and/or analog circuits. The planarization before the device epitaxial layers are deposited ensures a flat surface for state-of-the-art lithography.
Abstract: A method of processing semiconductor materials and a corresponding semiconductor structure, including providing a virtual substrate of a GaAs epitaxial film on a Si substrate, and epitaxially growing a relaxed graded layer of InxGa1−xAs at a temperature ranging upwards from about 600° C. with a subsequent process for planarization of the InGaAs alloy.
Abstract: A method of fabricating a semiconductor device including providing a semiconductor heterostructure, the heterostructure having a relaxed Si1−xGex layer on a substrate, a strained channel layer on the relaxed Si1−xGex layer, and a Si1−yGey layer; removing the Si1−yGey layer; and providing a dielectric layer. The dielectric layer includes a gate dielectric of a MISFET. In alternative embodiments, the heterostructure includes a SiGe spacer layer and a Si layer.
Type:
Grant
Filed:
August 6, 2001
Date of Patent:
June 24, 2003
Assignee:
AmberWave Systems Corporation
Inventors:
Eugene A. Fitzgerald, Richard Hammond, Matthew Currie
Abstract: A semiconductor structure and method of processing same including a substrate, a lattice-mismatched first layer deposited on the substrate and annealed at a temperature greater than 100° C. above the deposition temperature, and a second layer deposited on the first layer with a greater lattice mismatch to the substrate than the first semiconductor layer. In another embodiment there is provided a semiconductor graded composition layer structure on a semiconductor substrate and a method of processing same including a semiconductor substrate, a first semiconductor layer having a series of lattice-mismatched semiconductor layers deposited on the substrate and annealed at a temperature greater than 100° C. above the deposition temperature, a second semiconductor layer deposited on the first semiconductor layer with a greater lattice mismatch to the substrate than the first semiconductor layer, and annealed at a temperature greater than 100° C.
Abstract: A circuit including at least one strained channel, enhancement mode FET, and at least one strained channel, depletion mode FET. The depletion mode FET includes an ion implanted dopant supply. In exemplary embodiments, the FETs are surface channel or buried channel MOSFETS. In another exemplary embodiment, the FETs are interconnected to form an inverter.