Abstract: A micropower Maximum Power Point Tracker (?MPPT) suitable for use in low power applications to maximize the power output for a solar-power cell array. In one embodiment, a ?MPPT comprises an electrical circuit which includes a microprocessor/microcontroller used to execute the ?MPPT control algorithm, and a modulator controller to control the pulse width or frequency to a high speed switch. In addition, the electrical circuit may include an analog-to-digital (A/D) converter usable to measure the input voltage from a connected solar array, the current through an inductor of the circuit, and the voltage of an attached energy store/load. In another embodiment, the ?MPPT may operates in at least two modes depending on the energy store/loads conditions.
Abstract: A system and method for detecting radiation indicative of fire, such as forest fire. In one embodiment, a threshold energy level is determined based on ambient sensor conditions. A sensor unit may be setup to scan a predetermined area for electromagnetic radiation. Any detected electromagnetic radiation may then be band pass filtered to a wavelength range centered about a predetermined frequency associated with the presence of fire. The resulting energy level signal may then be further filter to pass only those signals which exhibit a “flicker” frequency. If the resulting filtered signal exceeds the threshold signal, a fire notification signal may then be generated.
Abstract: A system and method for detecting radiation indicative of fire, such as forest fire. In one embodiment, a threshold energy level is determined based on ambient sensor conditions. A sensor unit may be setup to scan a predetermined area for electromagnetic radiation. Any detected electromagnetic radiation may then be band pass filtered to a wavelength range centered about a predetermined frequency associated with the presence of fire. The resulting energy level signal may then be further filter to pass only those signals which exhibit a “flicker” frequency. If the resulting filtered signal exceeds the threshold signal, a fire notification signal may then be generated.
Abstract: A radiation sensitive sensor (1) which detects electromagnetic radiation within a narrow band of the electromagnetic spectrum using a single, fixed infrared detector (12) to cover a 360° area in a plurality of segmented sectors obtained by rotation of a mirror (19) for each of the sectors with detection of the radiation from each sector providing an indication of the presence of a physical phenomena (50) such as a forest fire. The use of a single fixed detector and the mirror rotation allows for a solar powered unit which is able to be employed either singularly or in a system of grid locations to cover a wide sensor area in order to provide continuous operation and reliable alarm indications.
Type:
Grant
Filed:
October 10, 2002
Date of Patent:
December 26, 2006
Assignee:
Ambient Control Systems, Inc.
Inventors:
Jonathan M. Luck, Stuart Waddell, Howard Coven
Abstract: A method and apparatus for integrating photovoltaic cells into a ground plane of satellite and terrestrial antenna systems is disclosed. The system provides an increase in available surface area for power generation without increasing the overall size. In one embodiment, a substrate has both photovoltaic cells and a conductive spacer formed on one side, where the conductive spacer has a thickness substantially equal to the thickness of the photovoltaic cells. In another embodiment, an antennae element may be formed on the top side of the conductive spacer, where the photovoltaic cells form a ground plane for the antenna element.