Patents Assigned to American Superconductors Corporation
  • Patent number: 12048253
    Abstract: A process for producing a cube textured foil is described. The process includes providing a cube textured metal foil M. The process further includes electroplating an epitaxial layer of an alloy on the foil M, whereby the epitaxial layer substantially replicates the cube texture of the metal foil M. The process further includes electroplating a non-epitaxial layer of an alloy on the epitaxial layer. The process further includes separating the electroplated alloy from the cube textured metal foil M to obtain an electro-formed alloy with one cube textured surface.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: July 23, 2024
    Assignee: American Superconductor Corporation
    Inventor: Cornelis Leo Hans Thieme
  • Patent number: 11794872
    Abstract: An electrical power system for a watercraft including a first electrical power plant configured to operate in a variable frequency mode to output variable frequency power to a first electrical network and a fixed frequency mode to output fixed frequency power to a second electrical network. There is a first electrical load including a first high temperature superconductor (HTS) motor connected to the first electrical network and a second electrical load connected to a second electrical network. A controller selectively connects the first electrical power plant to the first electrical network and operates the first electrical power plant in a variable frequency mode to output variable frequency power to power the first HTS motor and selectively connects the first electrical power plant to the second electrical network and operates the first electrical power plant in a fixed frequency mode to output fixed frequency power to power the second electrical load.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: October 24, 2023
    Assignee: American Superconductor Corporation
    Inventors: John M. Ulliman, Timothy MacDonald, Stephen I. Callis
  • Patent number: 11657930
    Abstract: A superconductor wire having a first HTS layer with a first cap layer in direct contact with a first surface of the first HTS layer and a second cap layer in direct contact with a second surface of the first HTS layer. There is a first lamination layer affixed to the first cap layer and a stabilizer layer having a first surface affixed to the second cap layer. There is a second HTS layer and a third cap layer in direct contact with a first surface of the second HTS layer and a fourth cap layer in direct contact with a second surface of the second HTS layer. There is a second lamination layer affixed to the fourth cap layer. The second surface of the stabilizer layer is affixed to the third cap layer and there are first and second fillets disposed along a edge of the laminated superconductor.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: May 23, 2023
    Assignee: American Superconductor Corporation
    Inventor: Martin W. Rupich
  • Patent number: 11509139
    Abstract: A system for load balancing on a multi-phase power line connected to a single phase lateral power line, includes a contactor configured to selectively connect each phase of the multi-phase power line to the single phase lateral power line. There is a phase change device connected in parallel with the contactor and a controller. During the phase change state, the controller connects the input of the phase change device to the multi-phase power line and connects the output of the phase change device the single phase lateral power line. The controller causes the phase change device to output a voltage to the single phase lateral line initially aligned with the first phase and then rotated to align with the second phase and causes the contactor changes connection to the second phase of the multi-phase power line and disconnect the phase change device from the power lines.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: November 22, 2022
    Assignee: American Superconductor Corporation
    Inventors: Patrick S. Flannery, Robert McFetridge
  • Patent number: 11390478
    Abstract: The present invention is in the field of A roll-to-roll apparatus for processing metal tapes with a ceramic coating. In particular, the present invention relates to a roll-to-roll apparatus for pro-cessing metal tapes with a ceramic coating comprising at least two rolls with fixed axis position, and at least one roll with variable axis position to adjust the tape position and/or tension, wherein the position and the diameter of the rolls are adjusted to touch the metal tape only from one side and to limit the stress on the metal tape at any point such that the metal tape is not stretched by more than 0.15%.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: July 19, 2022
    Assignee: American Superconductor Corporation
    Inventors: Michael Baecker, Thomas Braun, Ruslan Karabalaev
  • Patent number: 11286910
    Abstract: A yaw auto-calibration method configured to calibrate at least one anemometer of a yaw control system to correct for yaw misalignment. The yaw auto-calibration method includes collecting wind turbine data over a plurality of time periods with respect to the at least one anemometer. The wind turbine data including one or more of mechanical speed, wind speed, turbine power, and wind direction. The method includes determining from the collected data a wind direction compensation signal associated with a plurality of operational parameter ranges and the wind direction compensation signals correspond to the effects on the at least one anemometer due to yaw misalignment. The method further includes providing the wind compensation signals to the yaw control system to adjust the wind direction data of the at least one anemometer for each of the associated operational parameter ranges.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: March 29, 2022
    Assignee: American Superconductor Corporation
    Inventors: Gottfried Slanitsch, Robert Tratnig
  • Patent number: 11111903
    Abstract: A yaw auto-calibration method configured to calibrate an anemometer of a yaw control system to correct for yaw misalignment, includes collecting wind speed and wind direction data from the anemometer over a plurality of time periods. The method includes determining from the collected data a wind direction compensation signal associated with a plurality of wind speed ranges. The step of determining a wind direction compensation signal includes determining from a plotted performance value, a maximum performance value for each wind speed range and the step of determining further includes correlating the maximum performance value for each wind speed range with the associated average generator speed and plotting the maximum performance wind direction against average generator speed for each wind speed range. The maximum performance wind direction associated with the average generator speed for each wind speed range constitutes the wind direction compensation signal for the wind speed range.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: September 7, 2021
    Assignee: American Superconductor Corporation
    Inventors: Martin Göldner, Markus Weiss, Gottfried Slanitsch, Robert Tratnig
  • Patent number: 10242770
    Abstract: A method for producing a long length high temperature superconductor wire, includes providing a substrate, having a surface with a length of at least 50 meters and a width. The surface supports a biaxially textured high temperature superconducting layer and the biaxially textured high temperature superconducting layer has a length and a width corresponding to the length and width of the surface of the substrate. The method includes irradiating the biaxially textured high temperature superconductor layer with an ion beam impinging uniformly along the length and across the width of the biaxially textured high temperature superconductor layer to produce a uniform distribution of pinning microstructures in the biaxially textured high temperature superconductor layer.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: March 26, 2019
    Assignees: American Superconductor Corporation, Brookhaven Science Associates, LLC
    Inventors: Martin W. Rupich, Srivatsan Sathyamurthy, Qiang Li, Vyacheslav F. Solovyov
  • Patent number: 10193340
    Abstract: A static synchronous compensator configured to be installed in and provide reactive power to a medium voltage electric distribution system. There is a multi-level cascaded H-bridge (CHB) converter in an enclosure, having a nominal operating voltage in the medium voltage range. There is a first electrical bushing connecting the medium voltage electric distribution system to the input of the CHB converter. There is a second electrical bushing connecting ground or floating ground to the output of the CHB converter. There is a cooling system, which circulates the cooling fluid between in the interior of the enclosure to cool the CHB converter. There is a controller to control the converter to output reactive power at a medium voltage level.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: January 29, 2019
    Assignee: American Superconductor Corporation
    Inventors: Andrew Specht, John R. Brubaker, Mark D. Putnam, Douglas C. Folts, David G. Oteman, Patrick S. Flannery
  • Patent number: 10130009
    Abstract: A power electronics based system using natural, convection cooling, includes an enclosure housing a plurality of discrete components distributed in a vertical direction from a bottom portion to a top portion of the enclosure and having a heat density weighted average center at a first height along the vertical direction. There is a heat exchanger adjacent to the enclosure, including an inlet port and an outlet port in fluid communication with the enclosure. The heat exchanger has a vertical cooling average center at a second height. There is a cooling fluid disposed in the enclosure and in the heat exchanger to cool the discrete components. The discrete components are positioned in the vertical direction in the enclosure such that the first height of the heat density weighted average center along the vertical direction is below the second height of the vertical cooling average center of the heat exchanger.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: November 13, 2018
    Assignee: American Superconductor Corporation
    Inventors: Jie Yuan, Peter Hansen, John Brubaker, Patrick Flannery, Peter Winn
  • Patent number: 10079558
    Abstract: A static synchronous compensator includes at least one converter pole for producing a first phase of an AC voltage waveform having a fundamental cycle. The first phase of the AC voltage waveform includes alternating converter pole charging and discharging regions in each fundamental cycle. The at least one converter pole includes a plurality of cascaded H-bridge cells, each having a DC voltage source and a plurality of switches. The switches are capable of being switched to produce a plurality of switching states. There is a controller configured to control the switching states of the plurality of switches of each of the cascaded H-bridge cells based on the voltages of DC voltage sources of the H-bridge cells and on whether the AC waveform is in the converter pole charging region or the converter pole discharging region.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: September 18, 2018
    Assignee: American Superconductor Corporation
    Inventor: Patrick S. Flannery
  • Patent number: 9887025
    Abstract: A system for bundling a plurality of high temperature superconductor tapes into a flexible cable, includes a first alignment device for receiving and guiding there through the plurality of high temperature superconductor tapes, each of the tapes arranged with a wide surface oriented at a first angle. There is a second alignment device for receiving and guiding there through the plurality of high temperature superconductor tapes, each of said tapes arranged with the wide surface oriented at a second angle. The first angle is transverse to the second angle and plastically deforms the tapes to impart a twist pitch in the tapes. There is a forming member spaced from the second alignment device for receiving the plurality of high temperature superconductor tapes with the imparted twist pitch and forming them into a bundle of high temperature superconductor tapes of the high temperature superconductor tapes with the imparted twist pitch.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: February 6, 2018
    Assignee: American Superconductor Corporation
    Inventors: Glenn C. Driscoll, Henry C. Valcour, III, Paul Yankauskas, Daniel B. George, II, Alan W. Baum, Timothy G. Freidhoff, Bryan P. Tipton, Patricia D. Huber
  • Patent number: 9653196
    Abstract: A cooling system includes a first section of high temperature superconducting (HTS) cable configured to receive a first flow of coolant and to permit the first flow of coolant to flow therethrough. The system may further include a second section of high temperature superconducting (HTS) cable configured to receive a second flow of coolant and to permit the second flow of coolant to flow therethrough. The system may further include a cable joint configured to couple the first section of HTS cable and the second section of HTS cable. The cable joint may be in fluid communication with at least one refrigeration module and may include at least one conduit configured to permit a third flow of coolant between said cable joint and said at least one refrigeration module through a coolant line separate from said first and second sections of HTS cable. Other embodiments and implementations are also within the scope of the present disclosure.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: May 16, 2017
    Assignee: American Superconductor Corporation
    Inventors: Jie Yuan, James F. Maguire
  • Patent number: 9646742
    Abstract: A method for cooling high temperature superconducting (HTS) cable comprising receiving a first flow of coolant at a first section of HTS cable and permitting the first flow of coolant to flow therethrough. The method also includes receiving a second flow of coolant at a second section of HTS cable and permitting the second flow of coolant to flow therethrough. The first section of HTS cable and said second section of HTS cable are coupled via a cable joint, the cable joint electrically connecting the first and second sections of HTS cable. The cable joint is in fluid communication with at least one refrigeration module. The cable joint includes at least one conduit configured to permit a third flow of coolant between the cable joint and the at least one refrigeration module through a coolant line separate from the first and second sections of HTS cable.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: May 9, 2017
    Assignee: American Superconductor Corporation
    Inventors: Jie Yuan, James F. Maguire
  • Patent number: 9172312
    Abstract: An apparatus for harvesting solar power includes a photovoltaic array for generating a DC voltage; a discharge circuit for causing the DC voltage to decay from a first value to a second value; and an inverter circuit for transforming an output voltage from the discharge circuit into an AC voltage.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: October 27, 2015
    Assignee: American Superconductor Corporation
    Inventors: Douglas C. Folts, Kleber V. C. Facchini, Ajith H. Wijenayake, Gary J. Bowers
  • Patent number: 9037202
    Abstract: A cooling system includes a first section of high temperature superconducting (HTS) cable configured to receive a first flow of coolant and to permit the first flow of coolant to flow therethrough. The system may further include a second section of high temperature superconducting (HTS) cable configured to receive a second flow of coolant and to permit the second flow of coolant to flow therethrough. The system may further include a cable joint configured to couple the first section of HTS cable and the second section of HTS cable. The cable joint may be in fluid communication with at least one refrigeration module and may include at least one conduit configured to permit a third flow of coolant between said cable joint and said at least one refrigeration module through a coolant line separate from said first and second sections of HTS cable.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: May 19, 2015
    Assignee: AMERICAN SUPERCONDUCTOR CORPORATION
    Inventors: Jie Yuan, James Maguire
  • Patent number: 9012779
    Abstract: A cable includes a plurality of bundles of insulated electrical conductors, each bundle having a first conductor, a second conductor, and a third conductor in a layered configuration. The first conductor of each bundle is connected in parallel to the first conductor of the remaining bundles, the second conductor of each bundle is connected in parallel to the second conductor of the remaining bundles, and the third conductor of each bundle is connected in parallel to the third electrical conductor of the remaining bundles. In addition, within each bundle, the first, second and third electrical conductors are configured so that a magnetic field generated in response to currents flowing within the bundle is zero as seen at a plane oriented transverse to an electrical conduction direction of the cable and located between the ends of the cable.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: April 21, 2015
    Assignee: American Superconductor Corporation
    Inventors: Gregory L. Snitchler, Bruce B. Gamble, Glenn C. Driscoll, Timothy MacDonald
  • Patent number: 8886267
    Abstract: A cryogenically-cooled HTS cable is configured to be included within a utility power grid having a maximum fault current that would occur in the absence of the cryogenically-cooled HTS cable. The cryogenically-cooled HTS cable includes a continuous liquid cryogen coolant path for circulating a liquid cryogen. A continuously flexible arrangement of HTS wires has an impedance characteristic that attenuates the maximum fault current by at least 10%. The continuously flexible arrangement of HTS wires is configured to allow the cryogenically-cooled HTS cable to operate, during the occurrence of a maximum fault condition, with a maximum temperature rise within the HTS wires that is low enough to prevent the formation of gas bubbles within the liquid cryogen.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: November 11, 2014
    Assignee: American Superconductor Corporation
    Inventors: Douglas C. Folts, James Maguire, Jie Yuan, Alexis P. Malozemoff
  • Patent number: 8791052
    Abstract: A rotating machine includes a stator and a rotor configured to rotate within the stator. Rotor windings are supported in the rotor and are formed of a laminated electrical conductor in a single-layer saddle coil configuration. The conductor includes a first support lamina, a second support lamina, an insert including a high temperature superconductor disposed between the first and second support lamina, and a filler material surrounding the insert that bonds the insert to each of the first and second support lamina. At the location between the first support lamina and second support lamina corresponding to the location of the insert, the width dimension of the filler material on each side of the insert is at least 10 percent of a width of the conductor. The conductor is configured to carry at least 600 Amperes per turn and have a C-axis tensile strength of at least 21 MPa.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: July 29, 2014
    Assignee: American Superconductor Corporation
    Inventors: Michael A. Tanner, Gregory L. Snitchler, William L. Carter, Eric R. Podtburg
  • Patent number: 8731629
    Abstract: A junction box is provided which allows serial connection of the individual conductors of at least one high temperature superconductor (HTS) wire bundle. The junction box includes an electrical interface device disposed within a junction box housing. The interface device is configured receive both ends of each conductor of each HTS wire bundle, and to provide a superconductive electrical connection between respective first ends of conductors to respective second ends of other wire bundle conductors to form at least one superconductive multi-turn electromagnetic winding.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: May 20, 2014
    Assignee: American Superconductor Corporation
    Inventors: Christopher G. King, James F. Maguire