Patents Assigned to American University In Cairo (AUC)
  • Patent number: 10898865
    Abstract: This invention relates to an asymmetric composite membrane containing a polymeric matrix and carbon nanotubes within a single membrane layer, where the carbon nanotubes are randomly oriented within the polymeric matrix and the composite membrane is formed by phase inversion. This invention also relates to a method for producing the composite membrane which includes: coating a surface with a film of a polymer solution containing a polymeric matrix and carbon nanotubes dissolved in at least one solvent; immersing the coated surface in a non-solvent to affect solvent/non-solvent demixing resulting in phase inversion to form a carbon nanotube-containing membrane; and optionally, removing the carbon nanotube-containing membrane from the surface. The invention also relates to a desalination method using the composite membrane.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: January 26, 2021
    Assignee: AMERICAN UNIVERSITY IN CAIRO (AUC)
    Inventors: Nouran Ashraf Abdel Hamied El Badawi, Amal Mohamed Kamal Esawi, Adham Ramzy Ramadan
  • Patent number: 10537106
    Abstract: A gold nanoparticle-based assay for the detection of a target molecule, such as Hepatitis C Virus (HCV) RNA in serum samples, that uses positively charged gold nanoparticles (AuNPs) in solution based format. The assay has been tested on 74 serum clinical samples suspected of containing HCV RNA, with 48 and 38 positive and negative samples respectively. The developed assay has a specificity and sensitivity of 96.5% and 92.6% respectively. The results obtained were confirmed by Real-Time PCR, and a concordance of 100% for the negative samples and 89% for the positive samples has been obtained between the Real-Time PCR and the developed AuNPs based assay. Also, a purification method for the HCV RNA has been developed using HCV RNA specific probe conjugated to homemade silica nanoparticles. These silica nanoparticles have been synthesized by modified Stober method. This purification method enhanced the specificity of the developed AuNPs assay.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: January 21, 2020
    Assignee: AMERICAN UNIVERSITY IN CAIRO (AUC)
    Inventors: Hassan Mohamed El-Said Azzazy, Sherif Mohamed Shawky Abduo, Kamel Abdelmenem Mohamed Eid, Bassem Samy Shenouda Guirgis
  • Publication number: 20190090491
    Abstract: A gold nanoparticle-based assay for the detection of a target molecule, such as Hepatitis C Virus (HCV) RNA in serum samples, that uses positively charged gold nanoparticles (AuNPs) in solution based format. The assay has been tested on 74 serum clinical samples suspected of containing HCV RNA, with 48 and 38 positive and negative samples respectively. The developed assay has a specificity and sensitivity of 96.5% and 92.6% respectively. The results obtained were confirmed by Real-Time PCR, and a concordance of 100% for the negative samples and 89% for the positive samples has been obtained between the Real-Time PCR and the developed AuNPs based assay. Also, a purification method for the HCV RNA has been developed using HCV RNA specific probe conjugated to homemade silica nanoparticles. These silica nanoparticles have been synthesized by modified Stober method. This purification method enhanced the specificity of the developed AuNPs assay.
    Type: Application
    Filed: August 4, 2016
    Publication date: March 28, 2019
    Applicant: AMERICAN UNIVERSITY IN CAIRO (AUC)
    Inventors: Hassan Mohamed El-Said AZZAZY, Sherif Mohamed SHAWKY ABDUO, Kamel Abdelmenem Mohamed EID, Bassem Samy Shenouda GUIRGIS
  • Publication number: 20170258792
    Abstract: The invention pertains to ligands that bind to CD81 and that inhibit or block Plasmodium attachment to CD81, compositions and methods for preventing, inhibiting or treating infection by Plasmodium and ligands that target a Plasmodium binding site on CD81 and methods of making and using them. A series of ligand binding sites on the large extracellular loop of the open conformation of CD81 have been identified. Several important sites were located in regions identified by mutational studies to be the site of Plasmodium binding. Ligands that recognize these sites were identified. Linking together two or three ligands that bind with low or moderate affinities to different structurally unique sites on a target protein were used to generate small molecule ligand conjugates that exhibit very high affinities to their CD81 targets. Hybrid ligand molecules were also designed using fragment-based drug design methods to generate analogs of the ligands that bind more tightly to the protein than the parent compounds.
    Type: Application
    Filed: November 21, 2016
    Publication date: September 14, 2017
    Applicant: American University In Cairo (AUC)
    Inventors: HASSAN AZZAZY, Reem AL-OLABY, RODNEY BALHORN
  • Publication number: 20160053239
    Abstract: EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II brine pool is an extreme environment that possesses multiple harsh conditions such as; high temperature, salinity, pH and high concentration of metals, including toxic heavy metals. A fosmid metagenomic library using DNA isolated from the lowest convective layer this pool was used to identify EstATII. Polynucleotides encoding EstATII and similar esterases are disclosed and can be used to make EstATII. EstATII or compositions or apparatuses that contain it may be used in various processes employing lipases/esterases especially when these processes are performed under harsh conditions that inactivate other kinds of lipases or esterases.
    Type: Application
    Filed: March 24, 2014
    Publication date: February 25, 2016
    Applicants: AMERICAN UNIVERSITY OF CAIRO (AUC), KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY (KAUST)
    Inventors: Hamza EL DORRY, Rania SIAM, Yasmine M. MOHAMED
  • Publication number: 20150017258
    Abstract: A gold nanoparticle-based assay for the detection of a target molecule, such as Hepatitis C Virus (HCV) RNA in serum samples, that uses positively charged gold nanoparticles (AuNPs) in solution based format. The assay has been tested on 74 serum clinical samples suspected of containing HCV RNA, with 48 and 38 positive and negative samples respectively. The developed assay has a specificity and sensitivity of 96.5% and 92.6% respectively. The results obtained were confirmed by Real-Time PCR, and a concordance of 100% for the negative samples and 89% for the positive samples has been obtained between the Real-Time PCR and the developed AuNPs based assay. Also, a purification method for the HCV RNA has been developed using HCV RNA specific probe conjugated to homemade silica nanoparticles. These silica nanoparticles have been synthesized by modified Stober method. This purification method enhanced the specificity of the developed AuNPs assay.
    Type: Application
    Filed: January 31, 2013
    Publication date: January 15, 2015
    Applicant: AMERICAN UNIVERSITY OF CAIRO (AUC)
    Inventors: Hassan Mohamed El-Said Azzazy, Sherif Mohamed Shawky Abduo, Kamel Abdelmenem Mohamed Eid, Bassem Samy Shenouda Guirgis
  • Publication number: 20140356859
    Abstract: A gold nanoparticle-based colorimetric assay kit for nucleic acids from viral, bacterial and other microorganisms that detects unamplified or amplified polynucleotides in clinical specimens using unmodified AuNPs and oligotargeter polynucleotides that bind to a pathogen's nucleic acids. A method for detecting a pathogen comprising contacting a sample suspected of containing microbes with a polynucleotide that binds to pathogen nucleic acid and with gold nanoparticles, detecting the aggregation of nanoparticles, and detecting pathogen polynucleotides in the sample when the nanoparticles aggregate (solution color becomes blue) in comparison with a control or a negative sample not containing the virus when nanoparticles do not aggregate (solution color remains red).
    Type: Application
    Filed: June 2, 2014
    Publication date: December 4, 2014
    Applicant: American University of Cairo (AUC)
    Inventors: Hassan Mohamed El-Said AZZAZY, Tamer Mohamed Samir, Sherif Mohamed Shawky