Patents Assigned to Amkor Technology, Inc.
  • Patent number: 10410973
    Abstract: A semiconductor device and a method of manufacturing a semiconductor device. As a non-limiting example, various aspects of this disclosure provide a semiconductor device comprising one or more conductive shielding members and an EMI shielding layer, and a method of manufacturing thereof.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: September 10, 2019
    Assignee: Amkor Technology, Inc.
    Inventors: Yi Seul Han, Tae Yong Lee, Ji Yeon Ryu
  • Patent number: 10410999
    Abstract: A semiconductor package having an internal heat distribution layer and methods of forming the semiconductor package are provided. The semiconductor package can include a first semiconductor device, a second semiconductor device, and an external heat distribution layer. The first semiconductor device can comprise a first semiconductor die and an external surface comprising a top surface, a bottom surface, and a side surface joining the bottom surface to the tope surface. The second semiconductor device can comprise a second semiconductor die and can be stacked on the top surface of the first semiconductor device. The external heat distribution layer can cover an external surface of the second semiconductor device and the side surface of the first semiconductor device. The external heat distribution layer further contacts an internal heat distribution layer on a top surface of the first semiconductor die.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: September 10, 2019
    Assignee: AMKOR TECHNOLOGY, INC.
    Inventors: Bora Baloglu, Ron Huemoeller, Curtis Zwenger
  • Patent number: 10410967
    Abstract: An electronic device. For example and without limitation, various aspects of the present disclosure provide an electronic device that comprises a die comprising a circuit side and a second die side opposite the circuit side, a through hole in the die that extends between the second side of the die and the circuit side of the die, an insulating layer coupled to the inner wall of the through hole, a through electrode inside of the insulating layer, a dielectric layer coupled to the second side of the die, and a conductive pad coupled to the through electrode. The through electrode and the insulating layer may, for example, extend substantially the same distance from the second side of the die.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: September 10, 2019
    Assignee: Amkor Technology, Inc.
    Inventors: Won Chul Do, Yong Jae Ko
  • Patent number: 10410993
    Abstract: A semiconductor device structure and a method for manufacturing a semiconductor device. As a non-limiting example, various aspects of this disclosure provide a method for manufacturing a semiconductor device that comprises ordering and performing processing steps in a manner that prevents warpage deformation from occurring to a wafer and/or die due to mismatching thermal coefficients.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: September 10, 2019
    Assignee: Amkor Technology, Inc.
    Inventors: Yeong Beom Ko, Jin Han Kim, Dong Jin Kim, Do Hyung Kim, Glenn Rinne
  • Publication number: 20190267334
    Abstract: A method of forming an electronic device structure includes providing an electronic component having a first major surface, an opposing second major surface, a first edge surface, and an opposing second edge surface. A substrate having a substrate first major surface and an opposing substrate second major surface is provided. The second major surface of the first electronic component is placed proximate to the substrate first major surface and providing a conductive material adjacent the first edge surface of the first electronic component. The conductive material is exposed to an elevated temperature to reflow the conductive material to raise the first electronic component into an upright position such that the second edge surface is spaced further away from the substrate first major surface than the first edge surface. The method is suitable for providing electronic components, such as antenna, sensors, or optical devices in a vertical or on-edge.
    Type: Application
    Filed: February 27, 2018
    Publication date: August 29, 2019
    Applicant: Amkor Technology, Inc.
    Inventor: Shaun Bowers
  • Patent number: 10388643
    Abstract: Provided are a semiconductor device using, for example, an epoxy molding compound (EMC) wafer support system and a fabricating method thereof, which can, for example, adjust a thickness of the overall package in a final stage of completing the device while shortening a fabricating process and considerably reducing the fabrication cost. An example semiconductor device may comprise a first semiconductor die that comprises a bond pad and a through silicon via (TSV) connected to the bond pad; an interposer comprising a redistribution layer connected to the bond pad or the TSV and formed on the first semiconductor die, a second semiconductor die connected to the redistribution layer of the interposer and positioned on the interposer; an encapsulation unit encapsulating the second semiconductor die, and a solder ball connected to the bond pad or the TSV of the first semiconductor die.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: August 20, 2019
    Assignee: Amkor Technology, Inc.
    Inventors: Jin Young Kim, Doo Hyun Park, Ju Hoon Yoon, Seong Min Seo, Glenn Rinne, Choon Heung Lee
  • Patent number: 10388619
    Abstract: A semiconductor device and a manufacturing method thereof, which can reduce a size of the semiconductor device. As a non-limiting example, various aspects of this disclosure provide for a reduction in package size based at least in part on patterning techniques for forming interconnection structures.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: August 20, 2019
    Assignee: Amkor Technology, Inc.
    Inventors: Sung Woong Hong, Jun Park, Kyung Han Ryu
  • Patent number: 10388582
    Abstract: A semiconductor package and a manufacturing method thereof, which can reduce the size of the semiconductor package and improve product reliability. In a non-limiting example embodiment, the method may comprise forming an interposer on a wafer, forming at least one reinforcement member on the interposer, coupling and electrically connecting at least one semiconductor die to the interposer to the interposer, filling a region between the semiconductor die and the interposer with an underfill, and encapsulating the reinforcement member, the semiconductor die and the underfill on the interposer using an encapsulant.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: August 20, 2019
    Assignee: AMKOR TECHNOLOGY, INC.
    Inventors: Young Rae Kim, Won Chul Do, Ji Hun Lee, Min Hwa Chang, Dong Hyun Kim, Wang Gu Lee, Jin Ryang Hwang, Mi Kyeong Choi
  • Patent number: 10381313
    Abstract: An exemplary semiconductor device can comprise a die, a redistribution structure (RDS), an interconnect, a conductive strap, an encapsulant, and an EMI shield. The redistribution structure can comprise an RDS top surface coupled to the die bottom side. The interconnect can be coupled to the RDS bottom surface. The conductive strap can be coupled to the RDS, and can comprise a strap inner end coupled to the RDS bottom surface, and a strap outer end located lower than the RDS bottom surface. The encapsulant can encapsulate the conductive strap and the RDS bottom surface. The EMI shield can cover and contact the encapsulant sidewall and the strap outer end. Other examples and related methods are also disclosed herein.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: August 13, 2019
    Assignee: Amkor Technology, Inc.
    Inventors: Hee Sung Kim, Yeong Beom Ko, Joon Dong Kim, Dong Jean Kim, Sang Seon Oh
  • Patent number: 10366943
    Abstract: An electronic package includes a substrate having a conductive element. The conductive element includes a stepped portion disposed at an end of the conductive element. In one embodiment, the conductive element is a lead. In another embodiment, the conductive element is a die pad. The stepped portion includes a first groove extending inward from a lower surface of the first conductive element, and a second groove extending further inward from the first groove towards an upper surface of the conductive element. An electronic component is connected to the conductive element. In one embodiment, a clip is used to electrically connect the electronic component to the conductive element. An encapsulant encapsulates the electronic component and a portion of the substrate such that the stepped portion is exposed outside an exterior side surface of the encapsulant. The stepped portion is configured to improve the bonding strength of the electronic package when attached to a next level of assembly.
    Type: Grant
    Filed: September 16, 2017
    Date of Patent: July 30, 2019
    Assignee: Amkor Technology, Inc.
    Inventors: Byong Jin Kim, Jia Yunn Ting, Hyeong Il Jeon
  • Publication number: 20190221506
    Abstract: A method for forming packaged electronic devices includes providing a substrate having pads connected by conductive pad linking portions and semiconductor devices attached to the pads in different orientations. A second substrate is provided having conductive connectors each with a plate portion, a conductive member extending from a side segment of the plate portion, and a connective portion extending from the conductive member distal to the plate portion. The second substrate further has conductive linking portions physically connecting adjoining plate portions together. Each plate portion is attached to one of the semiconductor devices to provide a subassembly The conductive linking portions are configured to maintain the adjoining plate portions in substantial alignment with the semiconductor devices and to maintain the connective portions is a desired alignment during the plate portion attachment step.
    Type: Application
    Filed: January 12, 2018
    Publication date: July 18, 2019
    Applicant: AMKOR TECHNOLOGY, INC.
    Inventors: Siang Miang YEO, Mohd Hasrul Bin ZULKIFLI
  • Patent number: 10347562
    Abstract: A package includes a substrate having an electronic component flip chip mounted thereto by flip chip bumps. The electronic component includes an active surface and an inactive surface. Electrically conductive columns (TSV) extend through the electronic component between the active surface and the inactive surface. A RDL structure is coupled to the inactive surface, the RDL structure redistributing the pattern of the electrically conductive columns at the inactive surface to a pattern of inactive surface RDL lands. The inactive surface RDL lands are exposed through via apertures of a package body. By using the inactive surface of the electronic component to distribute the inactive surface RDL lands, the allowable size of the electronic component is maximized.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: July 9, 2019
    Assignee: Amkor Technology, Inc.
    Inventors: Louis W. Nicholls, Roger D. St. Amand, Jin Seong Kim, Woon Kab Jung, Sung Jin Yang, Robert F. Darveaux
  • Patent number: 10340244
    Abstract: A semiconductor device includes a low-density substrate, a high-density patch positioned inside a cavity in the low-density substrate, a first semiconductor die, and a second semiconductor die. The first semiconductor dies includes high-density bumps and low-density bumps. The second semiconductor die includes high-density bumps and low-density bumps. The high-density bumps of the first semiconductor die and the high-density bumps of the second semiconductor die are electrically connected to the high-density patch. The low-density bumps of the first semiconductor die and the low-density bumps of the second semiconductor die are electrically connected to the low-density substrate.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: July 2, 2019
    Assignee: AMKOR TECHNOLOGY, INC.
    Inventors: Jae Hun Bae, Won Chul Do, Min Yoo, Young Rae Kim, Min Hwa Chang, Dong Hyun Kim, Ah Ra Jo, Seok Geun Ahn
  • Patent number: 10340213
    Abstract: A thin semiconductor device with enhanced edge protection, and a method of manufacturing thereof. For example and without limitation, various aspects of this disclosure provide a thin semiconductor device comprising a substrate with an edge-protection region, and a method of manufacturing thereof.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: July 2, 2019
    Assignee: AMKOR TECHNOLOGY, INC.
    Inventors: Won Bae Bang, Kwang Seok Oh
  • Patent number: 10327076
    Abstract: A top port MEMS microphone package includes a substrate having a back volume expanding aperture therein. A MEMS microphone electronic component is mounted to the substrate directly above the back volume expanding aperture such that an aperture of the MEMS microphone electronic component is in fluid communication with the back volume expanding aperture. A lid having a lid cavity is mounted to the substrate. The back volume expanding aperture couples the aperture of the MEMS microphone electronic component to the lid cavity. By coupling the lid cavity to the aperture with the back volume expanding aperture, the resulting back volume is essentially the size of the entire top port MEMS microphone package. In this manner, the noise to signal ratio is minimized thus maximizing the sensitivity of the top port MEMS microphone package as well as the range of applications.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: June 18, 2019
    Assignee: AMKOR TECHNOLOGY, INC.
    Inventors: Ahmer Raza Syed, Bob Shih-Wei Kuo, Louis B. Troche, Jr.
  • Patent number: 10312186
    Abstract: A method for forming a packaged electronic device includes providing a substrate comprising a lead and a pad. The method includes attaching a thermally conductive structure to the pad and attaching an electronic component to one of the thermally conductive structure or the pad. The method includes electrically coupling the electronic component to the lead, and forming a package body that encapsulates the electronic component and at least portions of the lead, the pad, and the thermally conductive structure, wherein the package body has a first major surface and a second major surface opposite to the first major surface, and one of the first bottom surface of the thermally conductive structure or the bottom surface of the pad is exposed in the first major surface of the package body.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: June 4, 2019
    Assignee: Amkor Technology Inc.
    Inventors: Takahiro Yada, Toru Takahashi
  • Patent number: 10312220
    Abstract: A semiconductor package structure and a method for making a semiconductor package. As non-limiting examples, various aspects of this disclosure provide various semiconductor package structures, and methods for making thereof, that comprise a connect die that routes electrical signals between a plurality of other semiconductor die.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: June 4, 2019
    Assignee: Amkor Technology, Inc.
    Inventors: David Hiner, Michael Kelly, Ronald Huemoeller
  • Patent number: 10304698
    Abstract: A system and method for laser assisted bonding of semiconductor die. As non-limiting examples, various aspects of this disclosure provide systems and methods that enhance or control laser irradiation of a semiconductor die, for example spatially and/or temporally, to improve bonding of the semiconductor die to a substrate.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: May 28, 2019
    Assignee: Amkor Technology, Inc.
    Inventors: Tae Ho Yoon, Yang Gyoo Jung, Min Ho Kim, Youn Seok Song, Dong Soo Ryu, Choong Hoe Kim
  • Patent number: 10304697
    Abstract: An electronic device and a manufacturing method thereof. As non-limiting examples, various aspects of this disclosure provide an electronic device having a top side pin array, for example which may be utilized for three-dimensional stacking, and a method for manufacturing such an electronic device.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: May 28, 2019
    Assignee: Amkor Technology, Inc.
    Inventors: Devarajan Balaraman, Daniel Richter, Greg Hames, Dean Zehnder, Glenn Rinne
  • Patent number: 10304890
    Abstract: Various aspects of the present disclosure provide a semiconductor device, for example comprising a finger print sensor, and a method for manufacturing thereof. Various aspects of the present disclosure may, for example, provide an ultra-slim finger print sensor having a thickness of 500 ?m or less that does not include a separate printed circuit board (PCB), and a method for manufacturing thereof.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: May 28, 2019
    Assignee: Amkor Technology, Inc.
    Inventors: Jin Young Kim, No Sun Park, Yoon Joo Kim, Seung Jae Lee, Se Woong Cha, Sung Kyu Kim, Ju Hoon Yoon