Abstract: Dispersible single-walled and multi-walled carbon nanotubes (CNTs) are prepared by dissolving surfactants in water to form a solution; adding carbon nanotubes to the solution to form a mixture; sonicating and agitating the mixture to form a carbon-nanotube/water dispersion; centrifuging the dispersion to remove un-dispersed carbon nanotubes and impurities; repeatedly freezing and heating the CNT dispersion; and, sublimating water in the CNT dispersion by freezing and evacuating the dispersion to obtain carbon nanotubes coated with surfactant. The carbon nanotubes prepared by the method of the invention are dry, amphiphilic, and surfactant-coated powders that can be dispersed in both aqueous and organic solvents to form stable and uniform dispersions having a high concentration of carbon nanotubes.
Abstract: An infrared-transmitting glass material consists essentially of 35.3% wt. arsenic and 64.3% wt. selenium and has an expansion coefficient of 27×10?6/° C.
Abstract: An infrared-transmitting glass material consists essentially of 35.3% wt. arsenic and 64.3% wt. selenium and has an expansion coefficient of 27×10?6/° C.
Abstract: A method for molding a chalcogenide glass lens includes providing a mold. A preformed lens of chalcogenide glass is placed within the mold. The lens has a top surface and a bottom surface. An amount of chalcogenide glass is deposited within the mold and on the top surface of the preformed lens. The mold is heated, such that the chalcogenide glass on the top surface of the preformed lens softens, melts, and bonds to the top surface of the preformed lens. A lens surface is formed in the melted chalcogenide glass to form a molded lens which is bonded to the top surface of the preformed lens. The molded lens and preformed lens assembly is then removed from the mold.
Type:
Grant
Filed:
June 6, 2002
Date of Patent:
December 30, 2003
Assignee:
Amorphous Materials, Inc.
Inventors:
Albert Ray Hilton, II, Albert Ray Hilton, III, William S. Thompson
Abstract: A method for constructing a glass fiber imaging bundle includes drawing a continuous glass fiber from a dispenser. The dispenser is mounted for movement parallel to a drum having first, second, and third areas around the drum's circumference. The fiber is affixed to the drum at a location in the first area. The drum continuously rotates during the present process as the fiber is wound around the surface of the drum in the second area. The dispenser moves from a location adjacent to the first area to a location adjacent the third area. Once a ribbon is created, the fiber is dispensed to a location in the third area. The fiber is affixed to the surface of the drum in the third area, and the fiber is then dispensed from the third area to a second location in the first area. The fiber transversing the second area is cut and removed from the surface of the drum.
Abstract: Temperature of a body is determined by measuring the infrared radiation emitted by the body while simultaneously viewing the body. The body is viewed through a viewing cone with visible wavelength light conducted to the body from a remote source by optical fibers. Infrared radiation emitted by the body is collected by infrared-transmitting fibers which conduct the infrared energy to a remote sensor.
Type:
Grant
Filed:
September 30, 1993
Date of Patent:
August 4, 1998
Assignee:
Amorphous Materials, Inc.
Inventors:
Albert R. Hilton, Jr., Kenneth A. Klein
Abstract: An external window for infrared radiation is protected from hostile environments by forming a bulk window of gallium arsenide and depositing a protective layer of silicon on the external surface. A grid-like pattern of conductive lines is formed in the silicon layer to provide a heated de-icer and to act as a shield against longer wavelength electromagnetic radiation.