Patents Assigned to AMPLITUDE
  • Publication number: 20130142208
    Abstract: A high-gain optical amplifier for a wave to be amplified at a wavelength referred to as the emission wavelength, includes: optical pumping elements (4) producing a pump wave at a wavelength referred to as the pump wavelength; a solid amplifying medium (1) that is doped with active ions, the solid amplifying medium being capable of emitting laser radiation at the emission wavelength when the medium is pumped by the pumping elements; cooling elements (2) capable of cooling the solid amplifying medium to a temperature of no higher than 250 Kelvin; and optical multiplexing elements capable of coupling together the pump wave and the wave to be amplified in the amplifying medium. The amplifying medium has Stark sublevels contained within a spectral domain ranging over less than 200 cm?1 (approximately 20 nm, when expressed in wavelength). A laser including a resonant optical cavity and an amplifier are also described.
    Type: Application
    Filed: August 16, 2011
    Publication date: June 6, 2013
    Applicant: AMPLITUDE SYSTEMES
    Inventors: Antoine Courjaud, Sandrine Anne Ricaud, Frederic Pierre Henri Jacques Druon, Jean-Louis Doualan, Patrice Jean-Pierre Camy
  • Publication number: 20100316085
    Abstract: A high power solid-state non-regenerative optical amplification system (100) for amplifying a pulsed optical beam, includes a first optical amplification crystal (C1) and a second optical amplification crystal (C2) for amplifying the optical beam; optical pumping elements for longitudinal pumping amplification crystals (C1, C2); reflective optical elements (M?1, M?2, . . . , M?17) suitable for reflecting the optical beam so that the optical beam makes a total number of N sequential passes through the amplification crystals (C1, C2), wherein N is an integer and N>4. The reflective optical elements (M?1, M?2, . . . , M?17) are placed in a configuration suitable for alternatively interleaving the sequential optical beam passes through the 1st crystal (C1) and through the 2nd crystal (C2). A solid-state laser including the amplification system, and a method for amplifying a pulsed optical beam in a two-crystal multi-pass non-regenerative amplification system are also disclosed.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 16, 2010
    Applicant: AMPLITUDE TECHNOLOGIES
    Inventors: Luc VIGROUX, Pierre-Mary PAUL, Fabien PLE
  • Publication number: 20100309545
    Abstract: A chirped pulse fiber amplifier with nonlinear compensation, includes elements for generating a light pulse having an initial peak-power P0 and an initial duration T, a stretcher including at least one optical diffraction network having a line density higher than 1200 lines/mm and suitable for time-stretching the pulse and of inserting a time asymmetry in the stretched pulse, an amplifying fiber including a doped optical fiber section coupled with an optical pumping element and suitable for amplifying the stretched pulse for producing a pulse having a power, a compressor with optical diffraction grating suitable for time-compressing the amplified pulse so that the stretcher and the compressor are mismatched, the mismatch between the stretcher and the compressor being suitable for simultaneously compensating the second- and third-order nonlinear dispersions in the amplifying fiber during the propagation of a pulse having an initial power P0 through the chirped pulse amplifier.
    Type: Application
    Filed: January 15, 2009
    Publication date: December 9, 2010
    Applicant: AMPLITUDE SYSTEMES
    Inventors: Yoann Zaouter, Eric Mottay
  • Publication number: 20100296534
    Abstract: Method for shielding a high-power laser apparatus (S) in which a laser beam is generated and then amplified in at least a first amplification stage, including spatial filtering (4) of the amplified laser beam, phase correction (3) carried out on the laser beam before it is spatially filtered, and a measurement of the aberrations (7) on the laser beam. The phase of the beam is corrected so as to produce a beam having minimal aberrations after spatial filtering. The shielding device (D, D?) implementing this method may in particular be employed in apparatus using an intense laser beam of high (terawatt) peak power and in proton therapy units.
    Type: Application
    Filed: October 13, 2008
    Publication date: November 25, 2010
    Applicants: IMAGINE OPTIC, AMPLITUDE TECHNOLOGIES
    Inventors: Xavier Levecq, Gilles Riboulet
  • Publication number: 20100188733
    Abstract: An ultra-short high-power light pulse source including a first laser pump source (1), a mode-locked laser oscillator (2), a second laser pump source (4), a waveguide (6) capable of inserting spectral phases into the light pulses, and a compressor (8) capable of generating predetermined spectral phases into the light pulses. The waveguide (6) includes an element capable of compensating the predetermined spectral phases generated at least by the compressor (8), the second laser pump source (4) being capable of delivering a second pump light flow (5) having a power PL such that the spectral phases generated by the wave guide (6) are opposed or quasi opposed to the predetermined spectral phases generated by the compressor (8) in order to generate compressed ultra-short light pulses (9) at the output of the compressor (8) with a planar or quasi planar spectral phase.
    Type: Application
    Filed: June 13, 2008
    Publication date: July 29, 2010
    Applicants: AMPLITUDE SYSTEMES, INSTITUT D'OPTIQUE GRADUATE SCHOOL,, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Eric Mottay, Patrick Georges, Yoann Zaouter, Marc Hanna, Dimitris Papadopoulos, Frederic Druon, Eric Cormier
  • Publication number: 20090279167
    Abstract: A device for amplifying high-energy ultrashort light pulses, includes a generator (1), a first amplifying/time-stretching element (2) including a time-stretching element (3), a regenerative amplifier (4), a multipass amplifier (5) and a compressor (6). The device further includes a second amplifying/time-stretching element (11), arranged at the output of the generator (1), amplifying and time-stretching the initial light pulses (7) to generate amplified and time-stretched pulses (13), and a filtering element (12) arranged between the second amplifying/time-stretching element (11) and the amplification unit (2), blocking the low-amplitude light signals (14) of the amplified and time-stretched pulses (13).
    Type: Application
    Filed: May 5, 2009
    Publication date: November 12, 2009
    Applicant: AMPLITUDE TECHNOLOGIES
    Inventors: Luc VIGROUX, Pierre Mary PAUL, Federico CANOVA, Gilles RIBOULET
  • Publication number: 20070160104
    Abstract: The invention relates to a rare earth ion ultrashort laser source including a resonant cavity (1) having a first output face (2) partially reflecting and a second reflecting face (3). Said source also comprises a first active material (4). Said first material (4) receives a pump luminous flux (6) transmitted via a first solid laser pump source (7). According to the invention, the resonant cavity (1) exhibits a length of optical path travelled by said pulses greater than 7.
    Type: Application
    Filed: January 25, 2005
    Publication date: July 12, 2007
    Applicants: AMPLITUDE SYSTEMS, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), UNIVERSITE DE BORDEAUX 1
    Inventors: Clemens Honninger, Antoine Courjaud, Eric Mottay, Francois Salin