Patents Assigned to AMS International AG
  • Patent number: 11022487
    Abstract: An optical sensor arrangement comprises a photodiode (11), an integrator (12) with an integrator input (15) coupled to the photodiode (11), a comparator (13) with a first input (18) coupled to an integrator output (16) of the integrator (12), and a reference capacitor circuit (14) that is coupled to the integrator input (15) and is designed to provide a charge package to the integrator input (15). In a start phase (A), charge packages are provided to the integrator input (15), until a comparator input voltage (VIN) at the first input (18) of the comparator (13) crosses a comparator switching point.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: June 1, 2021
    Assignee: AMS INTERNATIONAL AG
    Inventors: Bernhard Greimel-Rechling, Peter Bliem, Herbert Lenhard, Josef Kriebernegg, Joachim Lechner, Christian Halper
  • Publication number: 20210156976
    Abstract: A method of using an optical TOF module to determine distance to an object. The method includes acquiring signals in the TOF module indicative of distance to the object, using a first algorithm to provide an output indicative of the distance to the object based on the acquired signals, using at least one second different algorithm to provide an output indicative of the distance to the object based on the acquired signals, and combining the outputs of the first and at least one second algorithms to obtain an improved estimate of the distance to the object. In some implementations, each of the first and at least one second algorithms further provides an output representing a respective confidence level indicative of how accurately distance to the object has been extracted by the particular algorithm.
    Type: Application
    Filed: November 30, 2018
    Publication date: May 27, 2021
    Applicant: ams International AG
    Inventors: Stephan BEER, Ioannis TOLIOS, David STOPPA, Qiang ZHANG, Pablo TRUJILLO SERRANO, Ian Kenneth MILLS, Miguel Bruno VAELLO PAÑOS, Bryant HANSEN, Mitchell Sterling MARTIN, Doug NELSON
  • Patent number: 10985291
    Abstract: The photodiode device comprises a substrate (1) of semiconductor material with a main surface (10), a plurality of doped wells (3) of a first type of conductivity, which are spaced apart at the main surface (10), and a guard ring (7) comprising a doped region of a second type of conductivity, which is opposite to the first type of conductivity. The guard ring (7) surrounds an area of the main surface (10) including the plurality of doped wells (3) without dividing this area. Conductor tracks (4) are electrically connected with the doped wells (3), which are thus interconnected, and further conductor tracks (5) are electrically connected with a region of the second type of conductivity. A doped surface region (2) of the second type of conductivity is present at the main surface (10) and covers the entire area between the guard ring (7) and the doped wells (3).
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: April 20, 2021
    Assignee: AMS INTERNATIONAL AG
    Inventors: Gerald Meinhardt, Ewald Wachmann, Martin Sagmeister, Jens Hofrichter
  • Patent number: 10972059
    Abstract: A MEMS sensor (1) comprises a MEMS transducer (10) being coupled to a MEMS interface circuit (20). The MEMS interface circuit (20) comprises a bias voltage generator (100), a differential amplifier (200), a capacitor (300) and a feedback control circuit (400). The bias voltage generator (100) generates a bias voltage (Vbias) for operating the MEMS transducer. The variable capacitor (300) is connected to one of the input nodes (I200a) of the differential amplifier (200). At least one of the output nodes (A200a, A200b) of the differential amplifier is coupled to a base terminal (T110) of an output filter (110) of the bias voltage generator (100). Any disturbing signal from the bias voltage generator (100) is a common-mode signal that is divided equally on the input nodes (I200a, I200b) of the differential amplifier (200) and is therefore rejected.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: April 6, 2021
    Assignee: AMS INTERNATIONAL AG
    Inventors: Thomas Froehlich, Mark Niederberger, Colin Steele, Rene Scheuner, Thomas Christen, Lukas Perktold, Duy-Dong Pham
  • Patent number: 10972122
    Abstract: A sensor arrangement includes a sensor having a first terminal and a second terminal, and an amplifier having an amplifier input for applying an input signal and an amplifier output for providing an amplified input signal, the amplifier input being coupled to the second terminal. A quantizer having a quantizer input and a quantizer output is configured to provide a multi-level output signal on the basis of the amplified input signal and a feedback circuit having a feedback circuit input coupled to the quantizer output and a feedback circuit output coupled to the first terminal. The feedback circuit includes a digital-to-analog converter configured to generate an analog signal on the basis of the multi-level output signal, the analog signal being the basis of a feedback signal provided at the feedback circuit output, a feedback capacitor coupled between the feedback circuit output and an output of the digital-to-analog converter, and a voltage source coupled to the feedback circuit output.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: April 6, 2021
    Assignee: AMS INTERNATIONAL AG
    Inventors: Matthias Steiner, Thomas Froehlich
  • Publication number: 20210099079
    Abstract: A charge pump circuit comprises a series circuit of a number N of stage circuits. A stage circuit comprises a converter circuit, a stage output, a stage input coupled via the converter circuit to the stage output, a first clock input and a second clock input coupled to the converter circuit, a control input and an activation transistor having a control terminal coupled to the control input and a first terminal coupled to the stage output.
    Type: Application
    Filed: April 15, 2019
    Publication date: April 1, 2021
    Applicant: ams International AG
    Inventors: Mark Niederberger, Adrian Ryser, Luca Bettini
  • Patent number: 10951222
    Abstract: An input current (Iin) is transformed into an output integrated voltage (Vout_int) using a parallel connection of an operational transconductance amplifier and an integration capacitor. The output integrated voltage is reduced by repeatedly discharging the integration capacitor through a feedback loop via a digital-to-analog converter generating feedback pulses, a feedback clock period (Tclk_DAC) defining time intervals between successive rising edges of the feedback pulses. Sampling is performed during an extended feedback clock period (T*) after a lapse of a plurality of feedback clock periods (Tclk_DAC).
    Type: Grant
    Filed: July 4, 2018
    Date of Patent: March 16, 2021
    Assignee: ams International AG
    Inventor: Fridolin Michel
  • Patent number: 10938356
    Abstract: In an embodiment an integration circuit has a first input terminal configured to receive a first input signal, a second input terminal configured to receive a second input signal, an output terminal to provide an output signal as a function of the first and the second input signal, a first and a second amplifier, each being switchably connected between the first or the second input terminal and the output terminal, and a capacitor which is switchably coupled in a feedback loop either of the first or of the second amplifier such that the capacitor and one of the first and the second amplifier form an inverting integrator providing the output signal.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: March 2, 2021
    Assignee: AMS INTERNATIONAL AG
    Inventor: Fridolin Michel
  • Patent number: 10886249
    Abstract: A surface treatment solution includes a fluoride source; a first solvent; and a water transforming agent to transform water produced during wafer surface treatment into a second solvent, which can be the same as, or different from, the first solvent. The solution can be used, for example, in surface preparation for wafers having a backend including an electrical interconnect that includes aluminum or an aluminum alloy.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: January 5, 2021
    Assignee: ams International AG
    Inventor: Jens Hofrichter
  • Patent number: 10827138
    Abstract: A photodetector arrangement having adjustable output, comprises a photodetector having an array of pixels wherein each pixel. The pixels are arranged to convert electromagnetic radiation into an analog detection data signal, respectively. A readout circuit is coupled to the photodetector and comprises a receiving component and a combining component. The receiving component is arranged to read out detection data signals, to select at least one detection data signal depending on a control signal and to adjust gain and polarity of the selected detection data signal. The combining component is arranged to combine the detection data signals into one or more output signals to be provided at one or more output terminals. A control unit is coupled to the readout circuit via a control terminal and is arranged to provide the control signal at the readout circuit depending on a set of instructions.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: November 3, 2020
    Assignee: ams International AG
    Inventors: Todd Bishop, Glenn Lee, Dan Jacobs
  • Publication number: 20200295774
    Abstract: An input current (Iin) is transformed into an output integrated voltage (Vout_int) using a parallel connection of an operational transconductance amplifier and an integration capacitor. The output integrated voltage is reduced by repeatedly discharging the integration capacitor through a feedback loop via a digital-to-analog converter generating feedback pulses, a feedback clock period (Tclk_DAC) defining time intervals between successive rising edges of the feedback pulses. Sampling is performed during an extended feedback clock period (T*) after a lapse of a plurality of feedback clock periods (Tclk_DAC).
    Type: Application
    Filed: July 4, 2018
    Publication date: September 17, 2020
    Applicant: ams International AG
    Inventor: Fridolin MICHEL
  • Patent number: 10768044
    Abstract: An optical sensor device comprises a first and a second optical sensor arrangement. In the first optical sensor arrangement at least one optical sensor structure measures the incidence angle of incoming light that is approximately on the main beam axis of a light source. The second optical sensor arrangement comprises at least one optical sensor structure with at least one optical sensor, at least two metal layers and opaque walls optically isolating the optical sensor. An evaluation circuit provides an output signal of the second optical sensor arrangement under the condition that the incidence angle measured by the first optical sensor arrangement lies within a set interval.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: September 8, 2020
    Assignee: ams International AG
    Inventors: David Mehrl, Troy Chesler, Eugene G. Dierschke
  • Patent number: 10760963
    Abstract: A circuit arrangement comprises a photo detector (2) for detecting electromagnetic energy and a signal generating means (4, 6, 12, 16) being suitable for generating a sequence of events wherein an event interval of the sequence depends on the detected electromagnetic energy. The signal generating means (4, 6, 12, 16) is coupled downstream of the photo detector (2). A counting means (30, 32, 34, 36) for measuring a time period until a given number of events has been generated is coupled downstream of the signal generating means (4, 6, 12, 16).
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: September 1, 2020
    Assignee: ams International AG
    Inventor: Gregg Kodra
  • Patent number: 10735567
    Abstract: A mobile device comprising an environmental sensor and an electrically actuated membrane is described. The electrically actuated membrane may increase the airflow over the environmental sensor which may improve the response of the sensor to changes in the ambient environment around the mobile device.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: August 4, 2020
    Assignee: ams International AG
    Inventors: Kim Phan Le, Martin Valkenburg, Christophe Marc Macours, Zoran Zivkovic
  • Patent number: 10691152
    Abstract: A low-dropout regulator comprises an output current branch (100) in which a first output driver (110) and a second output driver (120) is arranged. An input amplifier stage (200) provides a first control current (I1) to control the operating state of the first and the second output driver (110, 120). A current generator unit (300) provides a second control current (12) to operate the first output driver (110) in the second operating state and provides a third control current (13) to operate the second output driver (120) in the second operating state, when the first control current (I1) of the input amplifier stage (200) is below a threshold level.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: June 23, 2020
    Assignee: ams International AG
    Inventors: Carlo Fiocchi, Marco Cerchi
  • Publication number: 20190375628
    Abstract: The sensor package comprises a carrier (1) including electric conductors (13), an ASIC device (6) and a sensor element (7), which is integrated in the ASIC device (6). A dummy die or interposer (4) is arranged between the carrier (1) and the ASIC device (6). The dummy die or interposer (4) is fastened to the carrier (1), and the ASIC device (6) is fastened to the dummy die or interposer (4).
    Type: Application
    Filed: June 14, 2017
    Publication date: December 12, 2019
    Applicant: ams International AG
    Inventors: Willem Frederik Adrianus BESLING, Casper van der AVOORT, Coenraad Cornelis TAK, Remco Henricus Wilhelmus PIJNENBURG, Olaf WUNNICKE, Hendrik BOUMAN
  • Patent number: 10444103
    Abstract: In an embodiment, a method for calibrating a pressure sensor device is disclosed. The method involves determining the resonant frequency of a membrane of the pressure sensor device after the pressure sensor device has been attached to a circuit board, calculating a change in the resonant frequency from a resonant frequency stored in memory, calculating strain of the membrane of the pressure sensor device from the change in resonant frequency, and calibrating the pressure sensor device based on a capacitance-to-pressure curve calculated using the strain of the membrane of the pressure sensor device.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: October 15, 2019
    Assignee: ams International AG
    Inventors: Willem Frederik Adrianus Besling, Casper van der Avoort, Remco Henricus Wilhelmus Pijnenburg, Martijn Goossens
  • Patent number: 10274450
    Abstract: A capacitive environmental sensor and a method for determining the presence of a target substance (e.g. water) using differential capacitive measurements. The sensor includes a semiconductor substrate having a surface. The sensor also includes a plurality of sensor electrodes located on the surface. The electrodes are laterally separated on the surface by intervening spaces. The sensor further includes a sensor layer covering the electrodes. The sensor layer has a permittivity that is sensitive to the presence of the target substance. The surface of the substrate, in a space separating at least one pair of electrodes, includes a recess. The surface of the substrate, in a space separating at least one pair of electrodes, does not include a recess. The sensor may be provided in a Radio Frequency Identification (RFID) tag. The sensor may be provided in a smart building.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: April 30, 2019
    Assignee: ams International AG
    Inventors: Hilco Suy, Zoran Zivkovic, Franciscus Petrus Widdershoven, Nebojsa Nenadovic
  • Patent number: 10243017
    Abstract: The sensor chip stack comprises a sensor substrate of a semiconductor material including a sensor, a chip fastened to the sensor substrate, the chip including an integrated circuit, electric interconnections between the sensor substrate and the chip, electric terminals of the chip, the chip being arranged between the electric terminals and the sensor substrate, and a molding material arranged adjacent to the chip, the electric terminals of the chip being free from the molding material.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: March 26, 2019
    Assignee: ams International AG
    Inventors: Georg Parteder, Jochen Kraft, Franz Schrank, Thomas Troxler, Andreas Fitzi
  • Patent number: 10197520
    Abstract: Disclosed is an integrated circuit comprising a substrate (10) carrying a plurality of circuit elements; a metallization stack (12, 14, 16) interconnecting said circuit elements, said metallization stack comprising a patterned upper metallization layer comprising a first metal portion (20) and a second metal portion (21); a passivation stack (24, 26, 28) covering the metallization stack; a gas sensor including a sensing material portion (32, 74) on the passivation stack; a first conductive portion (38) extending through the passivation stack connecting a first region of the sensing material portion to the first metal portion; and a second conductive portion (40) extending through the passivation stack connecting a second region of the sensing material portion to the second metal portion. A method of manufacturing such an IC is also disclosed.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: February 5, 2019
    Assignee: ams International AG
    Inventors: Matthias Merz, Aurelie Humbert, Roel Daamen, David Tio Castro