Patents Assigned to Analog Device Global
-
Patent number: 9241142Abstract: The present disclosure provides a stream processor, an associated stream controller and compiler, and associated methods for data processing, such as image processing. In some embodiments, a method includes defining a kernel pattern associated with an image frame, and processing the image frame using the defined kernel pattern. The method can further include generating a kernel switch lookup table based on the defined kernel pattern. In various implementations, the stream controller is operable to direct execution of kernels on the image frame according to the defined kernel pattern and the kernel switch lookup table.Type: GrantFiled: January 24, 2013Date of Patent: January 19, 2016Assignee: Analog Devices GlobalInventors: Yong Wang, Jianrong Chen, Yimiao Zhao, Youcheng Huang, Xiaoming Chi
-
Patent number: 9238580Abstract: A MEMS sensor includes a micro-electromechanical structure, a detection circuit, and a self-test circuit to test the health of the MEMS sensor during runtime operations. The self-test circuit is configured to inject into the micro-electromechanical structure a plurality of injected test signals that are broad-band frequency-varying frequency signals, which are based on spread spectrum based modulation. The injected test signals may a magnitude that is below an observable threshold of the sensor signal as well as a test-signal bandwidth that overlaps with a substantial portion of the sensor bandwidth, including the stimulus of interest.Type: GrantFiled: March 11, 2013Date of Patent: January 19, 2016Assignee: Analog Devices GlobalInventors: Kamatchi Saravanan Alagarsamy, William A. Clark, Jishnu Choyi, James M. Lee, Vikas Choudhary
-
Patent number: 9219414Abstract: A switching regulator or other apparatus or techniques can include load current monitoring to provide a digital representation of an estimated load current. Load current monitoring can be performed by a circuit including a counter circuit, a comparator circuit, and a digitally-controlled source coupled to the counter circuit and configured to adjust a bias condition of a sensing device in response to a count provided by the counter circuit in order to establish a proportional relationship between a current conducted by the sensing device and a corresponding current conducted by a power switching device. The counter circuit is configured to increment and decrement the count in response to information provided by the comparator output and the count is generally indicative of the estimated load current, such as an average load current.Type: GrantFiled: October 28, 2013Date of Patent: December 22, 2015Assignee: Analog Devices GlobalInventor: Bin Shao
-
Patent number: 9209827Abstract: An integrated circuit includes a component calculator configured to compute at least one component value of a highly programmable analog-to-digital converter (ADC) from at least one application parameter, and a mapping module configured to map the component value to a corresponding register setting of the ADC based on at least one process parameter, wherein the integrated circuit produces digital control signals capable of programming the ADC. In a specific embodiment, the component calculator uses an algebraic function of a normalized representation of the application parameter to approximately evaluate at least one normalized ADC coefficient. The component value is further calculated by decimalizing the normalized ADC coefficient. In another specific embodiment, the component calculator uses an algebraic function of the application parameter to calculate the component value.Type: GrantFiled: March 13, 2015Date of Patent: December 8, 2015Assignee: Analog Devices GlobalInventors: Kevin Cao-Van Lam, Richard E. Schreier, Donald W. Paterson
-
Patent number: 9191189Abstract: A method for detecting a preamble in a received radio signal includes demodulating the radio signal based on a carrier derived from a local timing source to provide a digital signal including a sequence of bits oscillating at approximately a modulated data rate. A bit width of each successive bit of the digital signal is determined. If a pair of consecutive bit widths has a combined width within a threshold, the bit pair is indicated as potentially belonging to a preamble. If a threshold number of potential preamble bit pairs in a sequence of bit pairs within a given window is detected, the sequence of bit pairs is indicated as potentially belonging to a preamble. A measure of bit widths of at least some bits within a sequence of preamble bit pairs can be provided and a frequency of the local timing source can be adjusted according to the measure.Type: GrantFiled: November 20, 2013Date of Patent: November 17, 2015Assignee: Analog Devices GlobalInventor: Michael Dalton
-
Patent number: 9191023Abstract: Example embodiments of this disclosure can provide an apparatus, a system, and a method of correcting for charge lost from a sampling capacitor as a result of an analog to digital conversion being performed. In an embodiment, there is provided a method of operating an analog to digital converter comprising at least a first sampling capacitor used to sample an input signal, where the method can further comprise a correction step of modifying the voltage across the at least first sampling capacitor, the correction step being performed prior to commencing an acquire phase.Type: GrantFiled: February 5, 2014Date of Patent: November 17, 2015Assignee: Analog Devices GlobalInventor: Christopher Peter Hurrell
-
Patent number: 9177383Abstract: In one aspect, there is disclosed a digital signal processor and method performed by the same for performing object detection, including facial detection, in a reduced number of clock cycles. The method comprises using Sobel edge detection to identify regions with many edges, and classifying those regions as foreground candidates. Foreground candidates are further checked for vertical or horizontal symmetry, and symmetrical windows are classified as face candidates. Viola-Jones type facial detection is then performed only on those windows identified as face candidates.Type: GrantFiled: August 29, 2013Date of Patent: November 3, 2015Assignee: Analog Devices GlobalInventors: Anil M. Sripadarao, Bijesh Poyil
-
Patent number: 9178529Abstract: The present disclosure describes an improved multi-stage noise shaping (MASH) analog-to-digital converter (ADC) for converting an analog input signal to a digital output signal. In particular, a full delta-sigma (??) modulator is provided at the front-end of the MASH ADC, and another full ?? modulator is provided at the back-end of the MASH ADC. The front-end ?? modulator digitizes an analog input signal, and the back-end ?? modulator digitizes an error between the output of the front-end ?? modulator and the (original) analog input signal. In this configuration where the back-end modulator digitizes the error of the (full) front-end modulator, some design constraints of the front-end are relaxed. These design constraints include thermal noise, digital noise cancellation filter complexity (the quantization noise of the front-end is already shaped by the noise transfer function of the front-end), and/or non-linearity.Type: GrantFiled: October 18, 2013Date of Patent: November 3, 2015Assignee: Analog Devices GlobalInventors: Yunzhi Dong, Hajime Shibata, Wenhua W. Yang, Richard E. Schreier
-
Patent number: 9160356Abstract: An analog to digital convertor (ADC) comprises an integrator having an input selectively connected to an intermediate frequency (IF) signal input and an output connected to a summer. The summer has an output connected to an input of a quantizer, the quantizer output being operatively connected to a signal strength indicator. The integrator includes a programmable gain feedback component. The summer has a synthesized calibration signal input, the value of the programmable gain feedback component being configured to vary when a synthesized calibration signal at the intermediate frequency is applied to the summer. The signal strength indicator is configured to detect a value of the programmable gain feedback component when the signal strength is minimized and to calibrate the ADC accordingly.Type: GrantFiled: July 17, 2014Date of Patent: October 13, 2015Assignee: Analog Devices GlobalInventors: Niall Kevin Kearney, Keith O'Donoghue, Hongxing Li
-
Patent number: 9151818Abstract: A voltage measurement apparatus is provided that includes: a potential attenuator configured to be electrically connected between first and second conductors, which are electrically coupled to a source, wherein the potential attenuator includes a first impedance and a reference impedance arrangement in series with each other, wherein the reference impedance arrangement has an electrical characteristic that can be changed in a known fashion; and further including a processing arrangement configured to acquire at least one signal from the reference impedance arrangement, the at least one signal reflecting change of the electrical characteristic in the known fashion; and to determine a voltage between the first and second conductors in dependence on the fashion in which the electrical characteristic is changed being known and the at least one signal.Type: GrantFiled: November 8, 2012Date of Patent: October 6, 2015Assignee: Analog Devices GlobalInventors: Seyed Amir Ali Danesh, Jonathan Ephraim David Hurwitz
-
Patent number: 9148168Abstract: An analog-to-digital converter (ADC) can include a continuous-time delta sigma modulator and calibration logic. The calibration logic can calibrate direct feedback and flash clock delay coefficients of the continuous-time delta-sigma modulator without interrupting the normal operations of the ADC (e.g., in situ). Thus, the calibration logic can rectify performance and stability degradation by calibrating suboptimal coefficients.Type: GrantFiled: October 29, 2013Date of Patent: September 29, 2015Assignee: Analog Devices GlobalInventors: Zhao Li, David Alldred
-
Patent number: 9124292Abstract: A calibration system for an analog-to-digital converter (ADC) an internal ADC that receives an analog input and converts the analog input to digital multi-bit data. The calibration system also includes a reference shuffling circuit that shuffles reference values of comparators of the internal ADC. Further, the calibration system includes a calibration circuit that calibrates the comparators of the internal ADC. The calibration system includes a digital block that measures an amplitude based on the digital multi-bit data. Additionally, the calibration system includes calibration logic that controls the calibration circuit based on an output of the digital block.Type: GrantFiled: November 10, 2014Date of Patent: September 1, 2015Assignee: Analog Devices GlobalInventors: Zhao Li, Shipra Bhal, Kevin Glenn Gard, David Nelson Alldred, Christopher Mayer, Trevor Clifford Caldwell, David J. McLaurin, Victor Kozlov
-
Patent number: 9099932Abstract: A duty cycle balance module (DCBM) for use with a switch mode power converter. One possible half-bridge converter embodiment includes a transformer driven to conduct current in first and second directions by first and second signals during and second half-cycles, respectively. A current limiting mechanism adjusts the duty cycles of the first and second signals when a sensed current exceeds a predetermined limit threshold. The DCBM receives signals representative of the duty cycles which would be used if there were no modification by the current limiting mechanism and signals Dact—1 and Dact—2 representative of the duty cycles that are actually used for the first and second signals, and outputs signals Dbl—1 and Dbl—2 which modify signals Dact—1 and Dact—2 as needed to dynamically balance the duty cycles of the first and second signals and thereby reduce flux imbalance in the transformer that might otherwise arise.Type: GrantFiled: January 7, 2013Date of Patent: August 4, 2015Assignee: Analog Devices GlobalInventors: Yingyang Ou, Renjian Xie, Huailiang Sheng
-
Patent number: 9077376Abstract: A multi-string DAC is described and comprises at least two DAC stages. Each DAC stage comprises a string of impedance elements and a switching network. A control loop is provided to control the Ron of the switching network and provide code dependent control of switches in a DAC switching network.Type: GrantFiled: March 14, 2014Date of Patent: July 7, 2015Assignee: Analog Devices GlobalInventor: Dennis A. Dempsey
-
Patent number: 9065337Abstract: An inductor current emulation circuit for use with a switching converter in which regulating the output voltage includes comparing an output which varies with the difference between the output voltage and a reference voltage with a ‘ramp’ signal which emulates the current in the output inductor. A current sensing circuit produces an output which varies with the current in the switching element that is turned on during the ‘off’ time, an emulated current generator circuit produces the ‘ramp’ signal during both ‘off’ and ‘on’ times, a comparator circuit compares the ‘ramp’ signal with at least one threshold voltage which varies with the sensed current and toggles an output when the ‘ramp’ exceeds the thresholds, and a feedback circuit produces an output which adjusts the ‘ramp’ signal each time the comparator circuit output toggles until the ‘ramp’ signal no longer exceeds the threshold voltages.Type: GrantFiled: February 25, 2013Date of Patent: June 23, 2015Assignee: Analog Devices GlobalInventors: Hirohisa Tanabe, Kenji Tomiyoshi
-
Patent number: 9065479Abstract: In an example, a multistring DAC is described and includes at least two DAC stages. Each DAC stage includes a string of impedance elements and a switching network. In one configuration, the multi-string DAC is configured to use the voltage change at terminals of a first string separately to the voltage drop across a first switching network that couples the first and second strings to provide an analog output in response to a digital input to the DAC.Type: GrantFiled: March 14, 2014Date of Patent: June 23, 2015Assignee: Analog Devices GlobalInventor: Dennis A. Dempsey
-
Patent number: 9048734Abstract: A negative current protection system for a low side switching converter FET, for use with a switching converter arranged to operate high and low side FETs connected to an output inductor to produce an output voltage. The negative current protection system includes a current sensing circuit which produces an output Vcs that varies with the current in the high side FET, a negative current threshold generator which produces a threshold signal ?Ith which represents the maximum negative current to which the low side FET is to be subjected, and a comparison circuit arranged to compare the valley portion of Vcs and -Ith and to set a flag if Vcs<?Ith at a predetermined time in the switching cycle—typically after the converter's blanking time. When the flag is set, the system preferably responds by adjusting the operation of the switching FETs to reduce the negative current.Type: GrantFiled: March 1, 2013Date of Patent: June 2, 2015Assignee: Analog Devices GlobalInventor: Song Qin
-
Patent number: 9046905Abstract: Apparatus and methods for current sensing in switching regulators are provided. In certain implementations, a switching regulator includes a switch transistor, a replica transistor, a current source, a sense resistor, and a current sensing circuit. The drain and gate of the switch transistor can be electrically connected to the drain and gate of the replica transistor, respectively. Additionally, the current sensing circuit can control the voltage of the source of the replica transistor based on the polarity of a current through the switch transistor to generate an output current that changes in response to the switch transistor's current. The sense resistor can receive an offset current from the first current source and the output current from the current sensing circuit such that the voltage across the sense resistor changes in relation to the current through the switch transistor.Type: GrantFiled: March 8, 2013Date of Patent: June 2, 2015Assignee: Analog Devices GlobalInventor: Song Qin
-
Patent number: 9041363Abstract: A “windowless” H-bridge buck-boost switching converter includes a regulation circuit with an error amplifier which produces a ‘comp’ signal, a comparison circuit which compares ‘comp’ with a ‘ramp’ signal, and logic circuitry which receives the comparison circuit output and a mode control signal indicating whether the converter is to operate in buck mode or boost mode and operates the primary or secondary switching elements to produce the desired output voltage in buck or boost mode, respectively. A ‘ramp’ signal generation circuit operates to shift the ‘ramp’ signal up by a voltage Vslp(p?p)+Vhys when transitioning from buck to boost mode, and to shift ‘ramp’ back down by Vslp(p?p)+Vhys when transitioning from boost to buck mode, thereby enabling the converter to operate in buck mode or boost mode only, with no need for an intermediate buck-boost region.Type: GrantFiled: April 4, 2013Date of Patent: May 26, 2015Assignee: Analog Devices GlobalInventor: Hirohisa Tanabe
-
Patent number: 9041372Abstract: A switching power converter includes a voltage source that provides an input voltage Vin to an unregulated DC/DC converter stage and at least one buck-boost converter stage to produce a desired output voltage Vout. The unregulated DC/DC converter stage is adapted to provide an isolated voltage to the at least one regulated buck-boost converter stage, wherein the unregulated DC/DC converter stage comprises a transformer having a primary winding and at least one secondary winding and at least one switching element coupled to the primary winding. The at least one buck-boost converter stage is arranged to operate in a buck mode, boost mode or buck-boost mode in response to a mode selection signal from a mode selection module. By influencing the pulse width modulation output power controller the at least one buck-boost converter stage is arranged to produce one or multiple output voltages.Type: GrantFiled: March 13, 2013Date of Patent: May 26, 2015Assignee: Analog Devices GlobalInventors: Renjian Xie, Qingyi Huang, Yingyang Ou