Patents Assigned to and Space Administration
  • Patent number: 10011719
    Abstract: Polyamide aerogels and methods of making the same are discussed. One example method can include the act of creating a mixture of at least one diamine with at least one diacid chloride in a first solvent. The mixture can comprise a plurality of amine capped polyamide oligomers. Such a method can also include the acts of adding a cross-linking agent to the mixture to create a gel and performing one or more solvent exchanges to remove the first solvent. Additionally, such a method can include the act of subjecting the gel to supercritical drying to polyamide aerogel.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: July 3, 2018
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Mary Ann B. Meador, Jarrod Williams
  • Patent number: 10012568
    Abstract: A BiBlade sampler may include a first blade and a second blade in a retracted position. The BiBlade sampler may also include a gripper, which is driven by an actuator. The gripper may include a plurality of fingers to force the first blade and the second blade to remain in a retracted position. When the fingers are unhooked, the first blade and the second blade penetrate a surface of an object.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: July 3, 2018
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Paul G. Backes, Mircea Badescu, Nicholas Wiltsie, Scott J. Moreland, Jesse A. Grimes-York, Harish Manohara, Youngsam Bae, Risaku Toda, Russell G. Smith, Christopher McQuin
  • Patent number: 10006886
    Abstract: A method of detecting internal defects in composites or other multilayer materials includes generating a wavefield on a surface of the material. Wavefield data is collected from the wavefield on the surface, and the measured wavefield data is processed to provide measured energy data. The method may include generating simulated or predicted energy data for the multilayer material that is compared to the simulated energy data to determine if the multilayer material has internal defects or damage below the surface. The method can be utilized to detect and/or quantify damage or other defects that are “hidden” by damage that is closer to the surface of the material.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: June 26, 2018
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Cara A. Campbell Leckey
  • Patent number: 10005668
    Abstract: Methods that facilitate exfoliation of hexagonal boron nitride (hBN), exfoliated hBN, and associated intermediate products are disclosed. Such a method can include the acts of mixing a sample of hBN with an activation agent (e.g., NaF, etc.) and a selected set of chemicals (e.g., a metal chloride) and intercalating the set of chemicals into the hBN to obtain intercalated hBN. Additionally, such a method can include the acts of hydrating the set of chemicals (i.e., the intercalates), and converting the set of chemicals to a set of oxide nanoparticles when exfoliating the intercalated hBN. The exfoliated hBN can be washed (e.g., with HCl, etc.) to remove remaining nanoparticles.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: June 26, 2018
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Ching-cheh Hung, Janet B. Hurst
  • Patent number: 10000413
    Abstract: A clinker for use in cement manufacturing includes a cement clinker mixture having crystals of an element that is less electronegative than carbon and carbon bonded to at least a portion of the crystals.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: June 19, 2018
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Morgan Barrera Abney, James E. Alleman
  • Patent number: 10000419
    Abstract: Compositions and methods associated with intercalating and exfoliating a sample are described herein. For example, of a method may include mixing the sample with intercalation materials. The intercalation materials are then intercalated into the sample to obtain a sample intercalated with the intercalation materials. The intercalated sample can then be exfoliated to produce an exfoliated sample.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: June 19, 2018
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Ching-Cheh Hung, Janet B. Hurst, Maricela Lizcano, Diana Santiago
  • Patent number: 9987658
    Abstract: A method is provided for manufacturing a humidity sensing material. Particles of a trivalent rare earth hydroxide or oxide (such as lanthanum hydroxide) are mixed with particles of barium oxide and titanium dioxide in specified proportions. The particle mixture is heated to generate a sintered mixture that is milled. The resulting milled particles are mixed with glass particles, an organic surfactant, a solvent, an organic vehicle, and an alkali hydroxide. The resulting liquid mixture is deposited as a layer thereof onto a substrate. The substrate and layer thereon are processed to remove liquid portions of the liquid mixture. Such liquid removal processing includes at least one cycle of heating the layer followed by a corresponding cycle of cooling the layer in a nitrogen atmosphere containing less than 25 parts per million of oxygen.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: June 5, 2018
    Assignee: The United States of America as represented by the Aministrator of the National Aeronautics and Space Administration
    Inventors: Terry D. Rolin, Ian K. Small
  • Patent number: 9990335
    Abstract: A method of providing transformed target points for integrating a component into an assembly includes collecting a set of component target points, collecting a set of assembly target points, identifying target points common to the set of component target points and the set of assembly target points; performing a specified number of Monte Carlo transformations of selected ones of the common target points to yield a set of transformed target points and vectors and an associated uncertainty value for each transformed target point and vector, and using certain ones of the transformed target points for integrating the component into the assembly based on the associated uncertainty value for each of the transformed target points.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: June 5, 2018
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Joseph Hayden, Manal A. Khreishi, Theodore A. Hadjimichael, Raymond J. Ohl
  • Patent number: 9985594
    Abstract: A Gated CDS Integrator (GCI) may amplify low-level signals without introducing excessive offset and noise. The GCI may also amplify the low level signals with accurate and variable gain. The GCI may include a modulator preceding a linear amplifier such that offset or noise present in a signal path between the modulator and a demodulator input is translated to a higher out of band frequency.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: May 29, 2018
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Gerard T. Quilligan, Shahid Aslam
  • Patent number: 9978686
    Abstract: A process of fabrication and the resulting integrated circuit device is made of patterned metal electrical interconnections between semiconductor devices residing on and forming extremely harsh environment integrated circuit chips. The process enables more complicated wide band gap semiconductor integrated circuits with more than one level of interconnect to function for prolonged time periods (over 1000 hours) at much higher temperatures (500 C).
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: May 22, 2018
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: David J. Spry, Philip G. Neudeck
  • Patent number: 9977121
    Abstract: A radio frequency identification (RFID) system includes an RFID interrogator and an RFID tag having a plurality of information sources and a beamforming network. The tag receives electromagnetic radiation from the interrogator. The beamforming network directs the received electromagnetic radiation to a subset of the plurality of information sources. The RFID tag transmits a response to the received electromagnetic radiation, based on the subset of the plurality of information sources to which the received electromagnetic radiation was directed. Method and other embodiments are also disclosed.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: May 22, 2018
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Patrick W. Fink, Gregory Y. Lin, Timothy F. Kennedy, Phong H. Ngo
  • Patent number: 9977848
    Abstract: Computational fluid dynamics (CFD) computations are performed at time increments using structural properties of the nozzle and flow properties of combustion products flowing through the nozzle. Each CFD computation accounts for movement of the wall geometry of the rocket nozzle due to the flowfield. Structural dynamics computations are performed at each time increment using the CFD computations in order to describe the movement of the wall geometry. Mesh dynamics computations at each time increment redefine the flowfield to account for the movement of the wall geometry. The mesh dynamics computations are based on a spring analogy process. The computations are iterated to solution convergence at each time increment with results being output to an output device.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: May 22, 2018
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Ten-See Wang
  • Patent number: 9975765
    Abstract: A process for fabricating relatively thin SiC diaphragms may include fast Reactive Ion Etching (RIE) followed by Dopant Selective Reactive Ion Etching (DSRIE). The process may produce silicon carbide (SiC) diaphragms thinner than 10 microns. These thinner, more sensitive diaphragms may then be used to effectively resolve sub-psi pressures in jet engines, for example.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: May 22, 2018
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventor: Robert S. Okojie
  • Patent number: 9970914
    Abstract: Systems, methods, and other embodiments associated with gas detecting sensors. According to one embodiment, a gas sensor includes a metal layer, a barrier interlayer, a substrate layer, a first insulating layer, a conduction path, a contact pad, and a second insulating layer. The conduction path connects the metal layer to the contact pad. The second insulating layer prevents diffusion through the contact pad, the conduction path, or the metal layer. The sensor includes a wire bonded electrical connection to the contact pad such that voltage can be determined and/or applied.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: May 15, 2018
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Jennifer Xu, Gary W. Hunter
  • Patent number: 9970782
    Abstract: An angular position sensing system includes a first support with ring-shaped elements disposed thereon and spaced apart from one another in a curvilinear arrangement. Each ring-shaped element includes an electrically-conductive ring and an RFID integrated circuit electrically coupled to its electrically-conductive ring. A second support has an antenna coupled thereto that defines an electrically-conductive path commensurate in size and shape to at least a portion of the electrically-conductive ring. An interrogator transmits a signal to the antenna wherein electric current is generated along the antenna's electrically-conductive path and electromagnetic energy emanates from the antenna. Any ring-shaped element and its RFID integrated circuit energized by the electromagnetic energy generates in response a data transmission for receipt by the interrogator.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: May 15, 2018
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Patrick W. Fink, Timothy F. Kennedy, Gregory Y. Lin, Phong H. Ngo, Si Hui Yang
  • Publication number: 20180114450
    Abstract: An autonomous emergency flight management system may find safe and clear landing sites for unmanned aerial systems (UASs) in emergency situations. Emergency flight management software may reside on an onboard computing system. The computing system may continuously look at internal databases and input from other systems (e.g., a global positioning system (GPS), camera, compass, radar, sonar, etc.), depending on what is available. The emergency flight management system may make decisions on its own without human intervention. For instance, a database may provide some local likely candidates for landing sites. Information associated with the candidates may include latitude, longitude, altitude for top of a building, etc. Position updates may be continuously provided from an autopilot or other suitable system.
    Type: Application
    Filed: January 3, 2017
    Publication date: April 26, 2018
    Applicant: U.S.A., as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Patricia C. Glaab, Louis J. Glaab
  • Patent number: 9944410
    Abstract: The invention is a system and method of air launching a powered launch vehicle into space or high altitude. More specifically, the invention is a tow aircraft which tows an unpowered glider, with the powered launch vehicle attached thereto, to launch altitude. The powered launch vehicle is released from the unpowered glider and powered on for launch.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: April 17, 2018
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Gerald D Budd
  • Patent number: 9938023
    Abstract: A system, method, and computer-readable storage devices for a 6U CubeSat with a magnetometer boom. The example 6U CubeSat can include an on-board computing device connected to an electrical power system, wherein the electrical power system receives power from at least one of a battery and at least one solar panel, a first fluxgate sensor attached to an extendable boom, a release mechanism for extending the extendable boom, at least one second fluxgate sensor fixed within the satellite, an ion neutral mass spectrometer, and a relativistic electron/proton telescope. The on-board computing device can receive data from the first fluxgate sensor, the at least one second fluxgate sensor, the ion neutral mass spectrometer, and the relativistic electron/proton telescope via the bus, and can then process the data via an algorithm to deduce a geophysical signal.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: April 10, 2018
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Charles E. Clagett, Luis H. Santos Soto, Scott V. Hesh, Scott R. Starin, Salman I. Sheikh, Michael Hesse, Nikolaos Paschalidis, Michael A. Johnson, Aprille J. Ericsson
  • Patent number: 9940329
    Abstract: A system, method and computer-readable storage devices for providing a climate data persistence service. A system configured to provide the service can include a climate data server that performs data and metadata storage and management functions for climate data objects, a compute-storage platform that provides the resources needed to support a climate data server, provisioning software that allows climate data server instances to be deployed as virtual climate data servers in a cloud computing environment, and a service interface, wherein persistence service capabilities are invoked by software applications running on a client device. The climate data objects can be in various formats, such as International Organization for Standards (ISO) Open Archival Information System (OAIS) Reference Model Submission Information Packages, Archive Information Packages, and Dissemination Information Packages.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: April 10, 2018
    Assignee: The United States of America, as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John L. Schnase, Daniel Q. Duffy, Glenn S. Tamkin, Mark McInerney, Denis Nadeau, John H. Thompson, Scott Sinno, Savannah L. Strong, William David Ripley, III
  • Patent number: 9933687
    Abstract: An optimized wavelength-tuned nonlinear frequency conversion process using a liquid crystal clad waveguide. The process includes implanting ions on a top surface of a lithium niobate crystal to form an ion implanted lithium niobate layer. The process also includes utilizing a tunable refractive index of a liquid crystal to rapidly change an effective index of the lithium niobate crystal.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: April 3, 2018
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Mark A. Stephen