Patents Assigned to and Space Administration
  • Patent number: 7923709
    Abstract: A system for shielding personnel and/or equipment from radiation particles. In one embodiment, a first substrate is connected to a first array or perpendicularly oriented metal-like fingers, and a second, electrically conducting substrate has an array of carbon nanostructure (CNS) fingers, coated with an electro-active polymer extending toward, but spaced apart from, the first substrate fingers. An electric current and electric charge discharge and dissipation system, connected to the second substrate, receives a current and/or voltage pulse initially generated when the first substrate receives incident radiation. In another embodiment, an array of CNSs is immersed in a first layer of hydrogen-rich polymers and in a second layer of metal-like material. In another embodiment, a one- or two-dimensional assembly of fibers containing CNSs embedded in a metal-like matrix serves as a radiation-protective fabric or body covering.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: April 12, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Bin Chen, Christoper P. McKay
  • Patent number: 7924126
    Abstract: A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: April 12, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Thomas P. Hait, Peter J. Shirron
  • Patent number: 7924415
    Abstract: The present invention provides a light direction sensor for determining the direction of a light source. The system includes an image sensor; a spacer attached to the image sensor, and a pattern mask attached to said spacer. The pattern mask has a slit pattern that as light passes through the slit pattern it casts a diffraction pattern onto the image sensor. The method operates by receiving a beam of light onto a patterned mask, wherein the patterned mask as a plurality of a slit segments. Then, diffusing the beam of light onto an image sensor and determining the direction of the light source.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: April 12, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Douglas B. Leviton
  • Patent number: 7919891
    Abstract: A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: April 5, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Andrew Wilson, Andrew Punnoose, Katherine Strausser, Neil Parikh
  • Publication number: 20110071676
    Abstract: A robotic system includes a robot having joints, actuators, and sensors, and a distributed controller. The controller includes command-level controller, embedded joint-level controllers each controlling a respective joint, and a joint coordination-level controller coordinating motion of the joints. A central data library (CDL) centralizes all control and feedback data, and a user interface displays a status of each joint, actuator, and sensor using the CDL. A parameterized action sequence has a hierarchy of linked events, and allows the control data to be modified in real time. A method of controlling the robot includes transmitting control data through the various levels of the controller, routing all control and feedback data to the CDL, and displaying status and operation of the robot using the CDL. The parameterized action sequences are generated for execution by the robot, and a hierarchy of linked events is created within the sequence.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A As Represented by the Administrator of the National Aeronautics and space Administration
    Inventors: Adam M. Sanders, Matthew J. Reiland, Muhammad E. Abdallah, Douglas Martin Linn, Robert Platt
  • Publication number: 20110067520
    Abstract: An improved robotic thumb for a robotic hand assembly is provided. According to one aspect of the disclosure, improved tendon routing in the robotic thumb provides control of four degrees of freedom with only five tendons. According to another aspect of the disclosure, one of the five degrees of freedom of a human thumb is replaced in the robotic thumb with a permanent twist in the shape of a phalange. According to yet another aspect of the disclosure, a position sensor includes a magnet having two portions shaped as circle segments with different center points. The magnet provides a linearized output from a Hall effect sensor.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Chris A. Ihrke, Lyndon Bridgwater, Robert Platt, Charles W. Wampler, II, S. Michael Goza
  • Publication number: 20110071664
    Abstract: A grasp assist device includes a glove portion having phalange rings, contact sensors for measuring a grasping force applied by an operator wearing the glove portion, and a tendon drive system (TDS). The device has flexible tendons connected to the phalange rings for moving the rings in response to feedback signals from the sensors. The TDS is connected to each of the tendons, and applies an augmenting tensile force thereto via a microcontroller adapted for determining the augmenting tensile force as a function of the grasping force. A method of augmenting a grasping force of an operator includes measuring the grasping force using the sensors, encoding the grasping force as the feedback signals, and calculating the augmenting tensile force as a function of the feedback signals using the microcontroller. The method includes energizing at least one actuator of a tendon drive system (TDS) to thereby apply the augmenting tensile force.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Douglas Martin Linn, Chris A. Ihrke, Myron A. Diftler
  • Publication number: 20110067521
    Abstract: A humanoid robot includes a torso, a pair of arms, two hands, a neck, and a head. The torso extends along a primary axis and presents a pair of shoulders. The pair of arms movably extend from a respective one of the pair of shoulders. Each of the arms has a plurality of arm joints. The neck movably extends from the torso along the primary axis. The neck has at least one neck joint. The head movably extends from the neck along the primary axis. The head has at least one head joint. The shoulders are canted toward one another at a shrug angle that is defined between each of the shoulders such that a workspace is defined between the shoulders.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration, Oceaneering International, Inc.
    Inventors: Douglas Martin Linn, Robert O. Ambrose, Myron A. Diftler, Scott R. Askew, Robert Platt, Joshua S. Mehling, Nicolaus A. Radford, Philip A. Strawser, Lyndon Bridgwater, Charles W. Wampler, II, Muhammad E. Abdallah, Chris A. Ihrke, Matthew J. Reiland, Adam M. Sanders, David M. Reich, Brian Hargrave, Adam H. Parsons, Frank Noble Permenter, Donald R. Davis
  • Publication number: 20110071675
    Abstract: A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration, HRL Laboratories, LLC
    Inventors: James W. Wells, Neil David Mc Kay, Suhas E. Chelian, Douglas Martin Linn, Charles W. Wampler, II, Lyndon Bridgwater
  • Publication number: 20110071671
    Abstract: A humanoid robot includes a torso, a pair of arms, a neck, a head, a wrist joint assembly, and a control system. The arms and the neck movably extend from the torso. Each of the arms includes a lower arm and a hand that is rotatable relative to the lower arm. The wrist joint assembly is operatively defined between the lower arm and the hand. The wrist joint assembly includes a yaw axis and a pitch axis. The pitch axis is disposed in a spaced relationship to the yaw axis such that the axes are generally perpendicular. The pitch axis extends between the yaw axis and the lower arm. The hand is rotatable relative to the lower arm about each of the yaw axis and the pitch axis. The control system is configured for determining a yaw angle and a pitch angle of the wrist joint assembly.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration, Oeaneering International, Inc.
    Inventors: Chris A. Ihrke, Lyndon Bridgwater, David M. Reich, Charles W. Wampler, II, Scott R. Askew, Myron A. Diftler, Vienny Nguyen
  • Publication number: 20110071673
    Abstract: The lower arm assembly for a humanoid robot includes an arm support having a first side and a second side, a plurality of wrist actuators mounted to the first side of the arm support, a plurality of finger actuators mounted to the second side of the arm support and a plurality of electronics also located on the first side of the arm support.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGYOPERATIONS, INC., The U.S.A As Represented by the Administrotor of the National Aeronautics and Space Administration, Oceaneering International, Inc.
    Inventors: Chris A. Ihrke, Lyndon Bridgwater, Myron A. Diftler, David M. Reich, Scott R. Askew
  • Publication number: 20110071678
    Abstract: A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., The U.S.A. As Rpresented by the Administrator of the National Aeronautics and Space Administration, Oceaneering International, Inc.
    Inventors: Chris A. Ihrke, David M. Reich, Lyndon Bridgwater, Douglas Martin Linn, Scott R. Askew`, Myron A. Diftler, Robert Platt, Brian Hargrave, Michael C. Valvo, Muhammad E. Abdallah, Frank Noble Permenter, Joshua S. Mehling
  • Publication number: 20110067517
    Abstract: A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS,INC., The U.S.A .As Represented by the Administrator of the National Aeronautics and Space Administration, Oceaneering International, Inc.
    Inventors: Chris A. Ihrke, Joshua S. Mehling, Adam H. Parsons, Bryan Kristian Griffith, Nicolaus A. Radford, Frank Noble Permenter, Donald R. Davis, Robert O. Ambrose, Lucien Q. Junkin
  • Patent number: 7912101
    Abstract: A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: March 22, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Norman P. Barnes, Brian M. Walsh, Donald J. Reichle
  • Patent number: 7911174
    Abstract: A method and system are provided for sensing the position of a rotor in a hybrid stepper motor. First and second Hall sensors are positioned in a spaced-apart relationship with the first and second armatures of the rotor such that the first and second Hall sensors generate electrical outputs that are 90° out of phase with one another as the rotor rotates. The electrical outputs are adjusted relative to a reference, and the amplitude of the electrical outputs is further adjusted to account for spacing differences between the rotor and each of the first and second Hall sensors.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: March 22, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: David E. Howard, Dean C. Alhorn, Dennis A. Smith
  • Patent number: 7908079
    Abstract: Systems, methods and apparatus are provided through which an apparatus located on an airfield provides information to pilots in aircraft on the ground and simultaneously gathers information on the motion and position of the aircraft for controllers.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: March 15, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Richard W. Dabney, Susan Vinz Elrod
  • Patent number: 7906043
    Abstract: The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (Tg) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: March 15, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Joycelyn S. Harrison, Cheol Park, Kent A. Watson, Zoubeida Ounaies
  • Patent number: 7905946
    Abstract: Apparatus and methods for separating a fluid are provided. The apparatus can include a separator and a collector having an internal volume defined at least in part by one or more surfaces narrowing toward a bottom portion of the volume. The separator can include an exit port oriented toward the bottom portion of the volume. The internal volume can receive a fluid expelled from the separator into a flow path in the collector and the flow path can include at least two directional transitions within the collector.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: March 15, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Mark M. Weislogel, Evan A. Thomas, John C. Graf
  • Patent number: 7907333
    Abstract: An optical amplifier is configured to amplify an injected seed optical pulse. The optical amplifier may include two or more gain sections coupled to form a continuous solid waveguide along a primary optical path. Each gain section may include: (i) an optical isolator forming an input to that gain section; (ii) a doped optical fiber having a first end coupled to the optical isolator and having a second end; (iii) a plurality of pump laser diodes; (iv) a controller providing drive signals to each of the plurality, the controller being configured to provide at least pulsed drive signals; and (v) an optical coupler having a first input port coupled to the second end, and a second input port coupled to the plurality and an output port.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: March 15, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Donald Barry Coyle
  • Patent number: 7906358
    Abstract: Hetero-epitaxial semiconductor materials comprising cubic crystalline semiconductor alloys grown on the basal plane of trigonal and hexagonal substrates, in which misfit dislocations are reduced by approximate lattice matching of the cubic crystal structure to underlying trigonal or hexagonal substrate structure, enabling the development of alloyed semiconductor layers of greater thickness, resulting in a new class of semiconductor materials and corresponding devices, including improved hetero-bipolar and high-electron mobility transistors, and high-mobility thermoelectric devices.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: March 15, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Yeonjoon Park, Sang H. Choi, Glen C. King