Abstract: A track inspection vehicle includes a track inspection platform with a propulsion system and a vehicle control system, at least one track inspection device, and a track inspection controller. The track inspection platform is to be positioned on a railroad. The propulsion system and vehicle control system selectively and adjustably operate and control the track inspection platform to traverse the railroad in a self-propelled manner. Each track inspection device produces electronic inspection data relating to a condition of the railroad in conjunction with operation of the track inspection platform to perform a railroad inspection task. The track inspection controller controls one or more track inspection device to selectively or continuously produce the corresponding electronic inspection data in conjunction with performance of the railroad inspection task. The track inspection vehicle may also include a remote control unit. Various methods for inspecting track in a railroad are also provided.
Abstract: Track and track/vehicle analyzers for determining geometric parameters of tracks, determining the relation of tracks to vehicles and trains, analyzing the parameters in real-time, and communicating corrective measures to various control mechanisms are provided. In one embodiment, the track analyzer includes a track detector and a computing device. In another embodiment, the track/vehicle analyzer includes a track detector, a vehicle detector, and a computing device. In other embodiments, the track/vehicle detector also includes a communications device for communicating with locomotive control computers in lead units, locomotive control computers in helper units, and a centralized control office. Additionally, methods for determining and communicating optimized control, lubrication, and steering strategies are provided. The analyzers improve operational safety and overall efficiency, including fuel efficiency, vehicle wheel wear, and track wear, in railroad systems.
Abstract: Track and track/vehicle analyzers for determining geometric parameters of tracks, determining the relation of tracks to vehicles and trains, analyzing the parameters in real-time, and communicating corrective measures to various control mechanisms are provided. In one embodiment, the track analyzer includes a track detector and a computing device. In another embodiment, the track/vehicle analyzer includes a track detector, a vehicle detector, and a computing device. In other embodiments, the track/vehicle detector also includes a communications device for communicating with locomotive control computers in lead units, locomotive control computers in helper units, and a centralized control office. Additionally, a method for determining and communicating an optimized control strategy is provided. A method for dynamically modeling vehicle behavior, determining probabilities for derailment, and communicating recommended actions is also provided.
Abstract: A track analyzer included on a vehicle traveling on a track includes a vertical gyroscope for determining a grade and an elevation of the track. A rate gyroscope determines a curvature of the track. A speed determiner determines a speed of the vehicle relative to the track. A distance determiner determines a distance the vehicle has traveled along the track. A computing device, communicating with the vertical gyroscope, the rate gyroscope, the speed determiner, and the distance determiner, a) identifies a plurality of parameters as a function of the grade, elevation, and curvature of the track, b) determines in real-time if the parameters are within acceptable tolerances, and, c) if the parameters are not within the acceptable tolerances, generates corrective measures.