Abstract: A power line-operated electronic converter is adapted to deliver a relatively constant magnitude high frequency signal to a load(112) and is operable to draw a substantially sinusoidal current from the AC voltage source (101). The converter has DC input terminals (B+,B-) having a capacitor (105) connected therebetween. First and second rectifier bridges (103,104) are coupled to the DC input terminals. A resonant oscillator circuit (108) is coupled to the DC input terminals and to the transistor inverter employing a resonant inductor (111) and a resonant capacitor (110). An input-output feedback is implemented by coupling of a voltage developed across the resonant inductor to a differential voltage proportional to a difference of a voltage developed across DC input terminals and a voltage provided by a rectified AC voltage source, and modulation of frequency of oscillation in proportion to the differential voltage.
Abstract: A power line-operated electronic converter is adapted to deliver a relatively constant magnitude high frequency signal to a load (113) and is operable to draw a substantially sinusoidal current from the AC voltage source (101). The converter has DC input terminals (V+, V-) having a capacitor (108) connected therebetween, rectifying bridge (103) and boosting rectifiers (D5,D6) coupled to the DC input terminals, a resonant oscillator circuit coupled to the DC input terminals and to the transistor inverter (106) employing two integrated and synchronized resonant circuits having two resonant capacitors (114,112) and one common resonant inductor (110) wherein one circuit is used to operate the load and the other to provide boosted pulsating DC voltage to be naturally added and integrated with the rectified voltage of the AC voltage source.