Abstract: A system for acquiring electrocardiograph (ECG) and bioimpedance (BI) data is disclosed. The system (an ECG/BI measurement system) can use as few as one or two pairs of electrodes, permitting wearable devices employing the ECG/BI measurement system to be made into smaller, more comfortable, and more inconspicuous formats, as well as decreasing potential failure points in the measurement of electrical signals conducted between the system and the user. The system can measure both ECG and BI data using at least one shared pair of electrodes. In some cases, ECG and BI data are separately extracted from a measured signal across a shared pair of electrodes, while another pair of electrodes is being driven with a supply current. In other cases, internal switching can automatically switch a pair of electrodes between ECG-measuring circuitry and BI-measuring circuitry, such as based on a clock signal or other trigger.
Type:
Application
Filed:
January 28, 2021
Publication date:
July 29, 2021
Applicant:
ANEXA LABS LLC
Inventors:
Ana Trapero Martin, Michael Daniel Vermeer, Mathew Asselin, Joel Steven Ironstone, Alexey Reykhert
Abstract: Disclosed herein are systems and methods for non-invasively monitoring blood glucose levels with a level of accuracy that is high enough to replace invasive methods such as finger prick devices and others. In some examples, glucose values are determined using a patient's electrocardiogram (ECG) signals. Additionally, glucose values may additionally be determined using an impedance spectroscopy based method and then combined with glucose values determined using an ECG waveform to output a blood glucose value.
Abstract: An electronic device includes a housing, a first printed circuit board (PCB) provided within the housing, a second PCB provided within the housing, and a battery. The second PCB is separate and distinct from the first PCB and is communicatively coupled to the first PCB. The battery is located in a space separating the first PCB and the second PCB. The battery is configured to provide power to the first PCB and the second PCB.
Abstract: A method for measuring health metrics of a user is provided. A base of an electronic device is attached to the skin of the user. A housing of the electronic device is attached to the base, such that (i) the housing is secured to the base, and (ii) a window of the housing is positioned outside an opening in the base. One or more sensors within the housing generates first physiological data associated with the health metrics of the user through the housing window and the base opening. Second physiological data associated with the health metrics of the user is generated using a set of electrodes positioned outside of the housing. The set of electrodes are coupled to the base, and the set of electrodes facilitate movement of electrical signals between the skin of the user and a sensor printed circuit board within the housing of the electronic device.
Abstract: Disclosed herein are systems and methods for non-invasively monitoring blood glucose levels with a level of accuracy that is high enough to replace invasive methods such as finger prick devices and others. In some examples, glucose values are determined using a patient's electrocardiogram (ECG) signals. Additionally, glucose values may additionally be determined using an impedance spectroscopy based method and then combined with glucose values determined using an ECG waveform to output a blood glucose value.
Abstract: A method for measuring health metrics of a user is provided. A base of an electronic device is attached to the skin of the user. A housing of the electronic device is attached to the base, such that (i) the housing is secured to the base, and (ii) a window of the housing is positioned outside an opening in the base. One or more sensors within the housing generates first physiological data associated with the health metrics of the user through the housing window and the base opening. Second physiological data associated with the health metrics of the user is generated using a set of electrodes positioned outside of the housing. The set of electrodes are coupled to the base, and the set of electrodes facilitate movement of electrical signals between the skin of the user and a sensor printed circuit board within the housing of the electronic device.
Abstract: An electronic device includes a housing, one or more sensors and a battery within the housing, a base, and a set of electrodes. The housing includes a housing window. The sensors are configured to interface with the user to generate physiological data associated with the user's health. The battery is configured to power the sensors. The base is removably coupled to the housing and includes an inner surface, an outer surface, and a base window. The inner surface is configured to engage the housing and secure the housing to the base. The set of electrodes are removably coupled to the base such that when the housing is secured to the base, the set of electrodes is configured to conduct electrical signals of the housing across the base, facilitating movement of the electrical signals through the base, between the inner surface of the base and the outer surface of the base.