Patents Assigned to Anova Corporation
  • Patent number: 9084616
    Abstract: Methods for treating an annulus fibrosis having a defect include inserting a flexible device into the defect. The flexible device is advanced distally beyond an outer layer of the annulus fibrosus. The flexible device is then expanded such that a width of the flexible device is larger than the defect, where the flexible device prevents escape of nucleus pulposus through the defect. The flexible device may have at least two appendages made from a shape-memory metal. Alternatively, the flexible device may have a U-shaped structure that includes a central portion and two legs. The flexible device may also be anchored to the annulus fibrosis and/or the vertebrae.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: July 21, 2015
    Assignee: Anova Corporation
    Inventor: Bret A. Ferree
  • Patent number: 8936642
    Abstract: Methods for treating a defect in an annulus fibrous are described. The annulus fibrosis has an outer layer, at least one inner layer, and a defect extending through the outer and inner layers. An implant is inserted into the defect in the annulus fibrosis, the implant having at least one aperture. The implant is advanced distally beyond the outer layer in the annulus fibrosis and positioned to occlude the defect. An elongate fixation element is inserted through the at least one aperture, the elongate fixation element having a first end region and a second end region. The elongate fixation element is positioned such that the first end region is within the at least one aperture. The second end region of the elongate fixation element is anchored to the annulus fibrosis. The implant prevents escape of nucleus pulposus through the defect.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: January 20, 2015
    Assignee: Anova Corporation
    Inventor: Bret A. Ferree
  • Patent number: 8821549
    Abstract: Apparatus, systems and methods are used to repair, reconstruct and/or replace spinal features. A flexible longitudinal fixation component such a suture is passed around or through a portion of a spine, with the end sections of the component either being attached to one another or coupled to at least one bone implant. The bone implant may be a bone anchor or may form part of a pedicle screw assembly. The flexible longitudinal fixation component may pass through an anulus fibrosis (AF) and at least one intra-aperture component situated within a void or defect in an AF. The intra-aperture component may be composed of a porous mesh, allograft tissue or xenograft tissue. The intra-aperture component preferably includes one or more proximal-to-distal channels facilitating the intentional initial passage of nucleus pulposis (NP) tissue while preventing the extrusion of the NP long term.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: September 2, 2014
    Assignee: Anova Corporation
    Inventor: Bret A. Ferree
  • Publication number: 20140121682
    Abstract: A filament laterally spans a tear, fissure or other defect in an annulus. One portion of the filament is anchored to the annulus by passing at least one first anchor through the annulus and into the nucleus on one side of the fissure, and with a second portion of the filament being anchored to the annulus by passing at least one second anchor through the annulus and into the nucleus on a second side of the fissure, with the at least one first and second anchors being drawn back through the nucleus and against the inner surface of the posterior annulus by the application of a significant (e.g., about 15 N to 25 N) axial tension applied perpendicular to the posterior wall of the annulus, and with the fissure being drawn closed by the subsequent application of a significant axial tension applied perpendicular to the posterior wall of the annulus.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 1, 2014
    Applicant: ANOVA CORPORATION
    Inventor: Bret A. Ferree
  • Patent number: 8702733
    Abstract: Devices and methods for fixing defects in the anulus fibrosus (vertebral disc) of a patient are described. The devices include a mesh patch, and first and second suture assemblies, each of which include an anchor and a suture. The anchor has a first portion adapted to be inserted into a bone and a second portion having an opening therethrough. The suture is adapted to be disposed through the opening and has a first end is adapted to couple to the mesh patch. The method of treatment includes inserting the first portion of the first anchor into a cranial vertebra and inserting the second portion of the second anchor into a caudal vertebra. The first ends of the sutures are attached to the mesh patch. The mesh patch is positioned adjacent the defect by pulling on, or applying tension to, the second ends of the sutures.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: April 22, 2014
    Assignee: Anova Corporation
    Inventor: Bret A. Ferree
  • Patent number: 8679180
    Abstract: A method for retaining an intra-discal material within an annulus fibrosis having a posterior annulus, an inside surface, and an opening is described. The opening has a lateral and a vertical dimension. A retention device that includes a shape memory alloy is inserted through the opening in the annulus fibrosis. The length dimension of the device is longer than the lateral dimension of the opening and the width dimension of the device is longer than the vertical dimension of the opening in the annulus fibrosis. The retention device is positioned against the posterior annulus to rest against annulus fibrosis tissues adjacent the opening on the inside surface of the annulus fibrosis such that both a portion of the length dimension and a portion of the width dimension rests against annulus fibrosis tissues adjacent the opening. The retention device prevents the escape of intra-discal material through the opening.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: March 25, 2014
    Assignee: Anova Corporation
    Inventor: Bret A. Ferree
  • Patent number: 8449614
    Abstract: Methods and devices for fixing a defect in a vertebral disc of a patient. One method includes providing first, second, third, and fourth sutures. The first and second sutures are fastened to a vertebra cranial to the vertebral disc at first and second locations, respectively. The third and fourth sutures are fastened to a vertebra caudal to the vertebral disc at third and fourth locations, respectively. A device, such as a mesh device, is positioned adjacent the defect. The first, second, third, and fourth sutures are then positioned against the device, on the side of the device opposite of the defect. Tension is then applied to the first, second, third, and fourth sutures. Each of the first, second, third, and fourth sutures are then attached to at least one of the first, second, third, and fourth sutures, thereby holding the device adjacent the defect.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: May 28, 2013
    Assignee: Anova Corporation
    Inventor: Bret A. Ferree
  • Patent number: 8337528
    Abstract: One or more sutures can be used in spinal applications to hold an intradiscal device in place between two vertebrae or repair a defect in the soft tissue of the spine, such as the annulus fibrosis or the dura. Tension can also be applied to the sutures to stabilize a spinal segment having an intradiscal device to prevent or minimize excessive spinal extension, lateral bending, and axial rotation of the spinal segment. Anchors are placed in two adjacent vertebrae and sutures are passed through each anchor. The sutures can be passed through portions of the intradiscal device. Alternatively, the sutures can be passed through a mesh patch which is held against the vertebrae to hold the intradiscal device in place. Tension is applied to the first and second ends of the sutures and the sutures are welded together. The sutures can be welded in a cross-braced arrangement minimize or prevent extension, lateral bending, and rotation of the spinal segment.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: December 25, 2012
    Assignee: Anova Corporation
    Inventor: Bret A. Ferree
  • Patent number: 8267943
    Abstract: Spinal stabilization mechanisms act to prevent lateral bending, extension, and rotation across adjacent vertebrae. Methods for spinal stabilization includes placing one or more anchors at each vertebral level, positioning one or more sutures around each anchor at each level such that the each suture forms a loop or band around two adjacent anchors, applying tension to the ends of each suture to tighten the suture loop around the anchors and welding overlapping ends of each suture together to form suture bands connecting the anchors and thereby preventing lateral bending, extension, and rotation of the spinal segment. A suture banding tool may be used to place the sutures around the anchors in a looped configuration, apply tension to the suture ends to tighten the suture loop around the anchors and weld the ends of the suture to form a suture band connecting the anchors.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: September 18, 2012
    Assignee: Anova Corporation
    Inventor: Bret A. Ferree
  • Patent number: 8177810
    Abstract: Methods for providing a flexible spinal stabilization system operative to prevent lateral bending, extension, and rotation across two or more adjacent vertebrae are described. Broadly, the invention utilizes a pair of connectors on each vertebrae, and flexible elongated elements, such as sutures or cables, in an axial and crisscrossed pattern to provide an arrangement that resists extension, lateral bending, and torsional/rotational motion. In some embodiments, the flexible stabilization system includes a pair of locking anchors and a pair of hook-like anchors. The locking anchors are pre-threaded with a suture in a loose looped configuration before insertion into the vertebra. Once the locking anchors have been inserted, the suture loops can be looped over hook-like anchors inserted into an adjacent vertebrae to join the vertebrae and apply tension across the disc space. In some embodiments, the hook-like anchors can have multiple hooks for use in joining multiple vertebral levels.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: May 15, 2012
    Assignee: Anova Corporation
    Inventor: Bret A. Ferree
  • Patent number: 8162993
    Abstract: Methods for spinal stabilization operative to prevent lateral bending, extension, and rotation across two or more adjacent vertebrae are described. Broadly, the method includes placing two or more anchors at each vertebral level, passing one or more sutures through each anchor at each level, applying tension to the sutures and joining the sutures in a cross-braced arrangement over the disc space between two or more vertebrae to prevent lateral bending, extension, and rotation of the spinal segment. The sutures can be welded in any combination of diagonal and vertical patterns across the adjacent vertebrae. In some embodiments, two or more sutures can be threaded through some of the suture anchors such that multiple vertebral levels can be joined in a cross-braced arrangement. Two or more sutures can also be used in multiple anchors in two adjacent vertebrae to provide additional reinforcement or stabilization across different portions of the two vertebrae.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: April 24, 2012
    Assignee: Anova Corporation
    Inventor: Bret A. Ferree
  • Patent number: 8075619
    Abstract: Devices and methods for fixing defects in the anulus fibrosus (vertebral disc) of a patient are described. The devices a mesh patch; first, second, third, and fourth sutures; and first, second, third, and fourth anchors. Each anchor has a first portion adapted for insertion into a bone and a second portion having an opening. The sutures are disposed through the openings of the anchors. The first portions of the first and second anchors are inserted into a cranial vertebra. The first portions of the third and fourth anchors are inserted into a caudal vertebra. The mesh patch is positioned adjacent the defect. An end of first suture can be attached to an end of the third suture. An end of the second suture can be attached to an end of the fourth suture. The other ends of each of the first, second, third, and fourth sutures can then be anchored.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: December 13, 2011
    Assignee: Anova Corporation
    Inventor: Bret A. Ferree
  • Publication number: 20110264224
    Abstract: Methods and apparatus for treating disc herniation provide a conformable device which assumes a first shape associated with insertion and a second shape or expanded shape to occlude the defect which typically follows partial discectomy. The device may take different forms according to the invention, including patches size to cover the defect or plugs adapted to fill the defect. In a preferred embodiment, however, the device is a gel or other liquid or semi-liquid which solidifies to occlude the defect from within the body of the disc itself. In another preferred embodiment, a mesh screen is collapsed into an elongated form for the purposes of insertion, thereby minimizing the size of the requisite incision while avoiding delicate surrounding nerves.
    Type: Application
    Filed: May 13, 2011
    Publication date: October 27, 2011
    Applicant: Anova Corporation
    Inventor: Bret A. Ferree
  • Patent number: 7947080
    Abstract: Methods and apparatus for treating disc herniation provide a conformable device which assumes a first shape associated with insertion and a second shape or expanded shape to occlude the defect which typically follows partial discectomy. The device may take different forms according to the invention, including patches size to cover the defect or plugs adapted to fill the defect. In a preferred embodiment, however, the device is a gel or other liquid or semi-liquid which solidifies to occlude the defect from within the body of the disc itself. In another preferred embodiment, a mesh screen is collapsed into an elongated form for the purposes of insertion, thereby minimizing the size of the requisite incision while avoiding delicate surrounding nerves.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: May 24, 2011
    Assignee: Anova Corporation
    Inventor: Bret A. Ferree
  • Patent number: 7914553
    Abstract: Methods and apparatus for treating defects in the annulus fibrosis are described. The methods include providing first and second elongate fastening members, each having a first end and an anchor on the first end that is substantially transverse when deployed. The first end of the first and second elongate fastening members are positioned distal of the outer layer and at least one inner layer of the annulus fibrosis. The defect is then closed by interlocking the first and second elongate fastening members. Alternatively, second ends of the elongate fastening members may be linked, resulting in reducing the size of the opening of the defect. Devices having first and second elongate fastening members, each having a first end, a second end, and an anchor on the first end that is substantially transverse when deployed; and a connector that links the first and second elongate fastening members are also described.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: March 29, 2011
    Assignee: Anova Corporation
    Inventor: Bret A. Ferree
  • Publication number: 20100016889
    Abstract: Apparatus and methods facilitates reconstruction of the anulus fibrosus (AF) and/or the nucleus pulposus (NP) to prevent recurrent herniation following microlumbar discectomy. The invention may also be used in the treatment of herniated discs, anular tears of the disc, or disc degeneration, while enabling surgeons to preserve the contained nucleus pulposus. A spinal repair system according to the invention comprises flexible longitudinal fixation components adapted for placement through portions of the AF with intact fibers, a porous mesh reinforcement component adapted for placement over a region of the AF with damaged fibers, and an anti-adhesion component for placement over flexible longitudinal fixation components and the porous mesh component. Preferred embodiments of the invention include an intra-aperture component dimensioned for positioning within a defect in the AF, with one or more components being used to maintain the intra-aperture component in position.
    Type: Application
    Filed: November 3, 2008
    Publication date: January 21, 2010
    Applicant: Anova Corporation
    Inventor: Bret A. Ferree