Abstract: A test signal generating apparatus for communications equipment sequentially uses first and second sequence information which are stored in a sequence memory for storing the first sequence information including a reading order and read addresses of unit data including I and Q waveform data, and desired signal levels to be set to the unit data, and the second sequence information including frequency offsets. Consequently, the test signal generating apparatus provides frequency offsets at a plurality of steps every predetermined frequency intervals by using a predetermined carrier frequency as a reference, with respect to the I and Q waveform data at a digital stage up to digital-to-analog converters, and outputs a test signal in the frequency hopping system.
Abstract: A measurement beam emitted from a laser diode is split into two beams by a beam splitter, and one of the two beams is guided to a first port of an acoustic optical element. When a high-frequency signal is applied from a diffraction controller to a piezoelectric transducer, the split beam input into the acoustic optical element from the first port is diffracted and frequency-shifted and output from a second port. If the high-frequency signal is not applied, the input beam rectilinearly propagates without diffracting and is output from a third port. This output beam is guided to a fourth port through an optical fiber. The beam input from the fourth port rectilinearly propagates and is output from the second port. The beam output from the second port is mixed with the other measurement beams split by the beam splitter to be converted to an electrical signal. The electrical signal is analyzed by a spectrum analyzer.