Patents Assigned to Anthony Best Dynamics Ltd
  • Patent number: 11999425
    Abstract: A steering wheel actuation device, for example in ADAS testing, is provided. The actuation device can include a steering wheel actuator to selectively move during testing between an engaged configuration and a disengaged configuration. The actuation device can impart an actuation force to a vehicle steering wheel in the engaged configuration, and can vary the magnitude of the resistance it creates to the turning of the steering wheel during testing.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: June 4, 2024
    Assignee: Anthony Best Dynamics Ltd.
    Inventors: Matthew James Hubbard, Tin Wah Chiu, Andrew Pick, Colin Martin
  • Patent number: 11977002
    Abstract: A soft target movement platform (1) which comprises at least one drive unit (11), each unit having a motor carrier (12). The drive motor (21) is preferably journaled in the motor carrier about an axis central and longitudinal of the motor. A drive wheel (6) is drivingly connected to the drive motor, with the wheel's axis of rotation offset from the central longitudinal axis by a lever arm (31). The lever arm having a horizontal extent in use, whereby wheel load tends to rotate the motor with respect to the carrier about the longitudinal axis. A spring (32) acting between the drive motor and the carrier counteracts the wheel load rotation.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: May 7, 2024
    Assignee: Anthony Best Dynamics Ltd.
    Inventor: James Sones
  • Patent number: 11958491
    Abstract: A target vehicle, for example a two-wheeled vehicle, for mounting onto an ADAS (Advanced Driver Assistance System) testing platform is provided. The target vehicle comprises one or more sensors and an actuation assembly comprising an actuator. The sensors are arranged to measure a parameter relating to the dynamics of the target vehicle and may for example comprise accelerometers. The actuation assembly adjusts the tilt of the target vehicle in dependence on the output of the sensor(s), for example by means of a control unit. The tilting of the vehicle during cornering may thus be simulated. The measuring of such a parameter and the adjusting of the tilt may be conducted remotely from the testing platform. The sensor(s), control unit and actuator assembly may be self-contained within the target vehicle. A method of modeling a VRU (Vulnerable Road User) for ADAS testing is also provided.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: April 16, 2024
    Assignee: Anthony Best Dynamics Ltd.
    Inventors: William Bright, Colin Martin, Gabriele Cocco, Andrew Pick
  • Patent number: 11486796
    Abstract: A robot has brake and accelerator actuating levers (9, 10) and a rotary actuator (12) between them. A drive ring (16) is fast with an actuator drive member (14) and between them they captivate a journal bearing (17) for the brake actuating lever (9) on which a return spring (19) acts. Advance of the lever is via a cam member (31) adjacent it. Wherever the output drive member (14) from the rotary actuator is turned, the cam member is rotated correspondingly. For brake application, the drive member (14) is driven, clockwise in FIG. 2. For brake release, and accelerator application, the drive member is driven back and the cam member is disengaged from the lever (9) with unidirectional freedom. The drive ring (16) is carried on a central ‘clutch’ member (35). The central member (35) is journalled in a fixed clutch member (36), which carries a clutch operating winding (38) for clutching together the central member (35) and an accelerator drive member (39) journalled on the central member.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: November 1, 2022
    Assignee: Anthony Best Dynamics Ltd.
    Inventor: Colin Martin
  • Publication number: 20210403084
    Abstract: A steering wheel actuation device, for example in ADAS testing, is provided. The actuation device can include a steering wheel actuator to selectively move during testing between an engaged configuration and a disengaged configuration. The actuation device can impart an actuation force to a vehicle steering wheel in the engaged configuration, and can vary the magnitude of the resistance it creates to the turning of the steering wheel during testing.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 30, 2021
    Applicant: Anthony Best Dynamics Ltd.
    Inventors: Matthew James HUBBARD, Tin Wah CHIU
  • Publication number: 20210291850
    Abstract: A target vehicle, for example a two-wheeled vehicle, for mounting onto an ADAS (Advanced Driver Assistance System) testing platform is provided. The target vehicle comprises one or more sensors and an actuation assembly comprising an actuator. The sensors are arranged to measure a parameter relating to the dynamics of the target vehicle and may for example comprise accelerometers. The actuation assembly adjusts the tilt of the target vehicle in dependence on the output of the sensor(s), for example by means of a control unit. The tilting of the vehicle during cornering may thus be simulated. The measuring of such a parameter and the adjusting of the tilt may be conducted remotely from the testing platform. The sensor(s), control unit and actuator assembly may be self-contained within the target vehicle. A method of modeling a VRU (Vulnerable Road User) for ADAS testing is also provided.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 23, 2021
    Applicant: Anthony Best Dynamics Ltd.
    Inventors: William BRIGHT, Colin MARTIN, Gabriele COCCO, Andrew PICK
  • Publication number: 20210255064
    Abstract: A soft target movement platform (1) which comprises at least one drive unit (11), each unit having a motor carrier (12). The drive motor (21) is preferably journaled in the motor carrier about an axis central and longitudinal of the motor. A drive wheel (6) is drivingly connected to the drive motor, with the wheel's axis of rotation offset from the central longitudinal axis by a lever arm (31). The lever arm having a horizontal extent in use, whereby wheel load tends to rotate the motor with respect to the carrier about the longitudinal axis. A spring (32) acting between the drive motor and the carrier counteracts the wheel load rotation.
    Type: Application
    Filed: June 21, 2019
    Publication date: August 19, 2021
    Applicant: Anthony Best Dynamics Ltd.
    Inventor: James SONES
  • Publication number: 20200340884
    Abstract: A robot has brake and accelerator actuating levers (9, 10) and a rotary actuator (12) between them. A drive ring (16) is fast with an actuator drive member (14) and between them they captivate a journal bearing (17) for the brake actuating lever (9) on which a return spring (19) acts. Advance of the lever is via a cam member (31) adjacent it. Wherever the output drive member (14) from the rotary actuator is turned, the cam member is rotated correspondingly. For brake application, the drive member (14) is driven, clockwise in FIG. 2. For brake release, and accelerator application, the drive member is driven back and the cam member is disengaged from the lever (9) with unidirectional freedom. The drive ring (16) is carried on a central ‘clutch’ member (35). The central member (35) is journalled in a fixed clutch member (36), which carries a clutch operating winding (38) for clutching together the central member (35) and an accelerator drive member (39) journalled on the central member.
    Type: Application
    Filed: January 15, 2019
    Publication date: October 29, 2020
    Applicant: Anthony Best Dynamics Ltd.
    Inventor: Colin MARTIN
  • Patent number: 10214212
    Abstract: A system for controlling from a path of a first vehicle a second vehicle to a complementary path, the system comprising a first vehicle sub-system having a memory for time and (X, Y) position co-ordinates of the first vehicle's path; a GPS receiver for determining time and actual (X, Y) position coordinates of the first vehicle, means for comparing the first vehicle's actual position with path position at determined times as test path errors and means for transmitting the test path errors and a second vehicle sub-system having a memory for time and (X, Y) position coordinates of the second vehicle's path; a GPS receiver for determining time and actual (X, Y) position coordinates of the second vehicle, means for receiving the test path errors, means for computing a modified path of the second vehicle taking account of the test path errors and means for controlling the second vehicle.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: February 26, 2019
    Assignee: Anthony Best Dynamics Ltd
    Inventor: Stephen John Neads