Patents Assigned to ANTRIA, INC.
  • Patent number: 9956317
    Abstract: Methods and kits for producing cellular fractions enriched in adipose derived stem cells. Methods are provided where adipose tissue obtained from liposuction is enzymatically treated using a solution containing collagenase and divalent cations prior to the application of traditional methods of stromal-vascular fraction isolation. The enzymatic solutions may contain collagenase types I and II to a final concentration of about 0.001 mg/ml to 0.010 mg/ml. The divalent cations may be present as calcium, magnesium, and zinc chloride. The final concentration of calcium, magnesium, and zinc may range from about 0.001 to 0.1 micromolar; about 0.005 to 0.5 micromolar; and about 0.0015 to 0.15 micromolar, respectively. The enzymatic solutions may be generated using a kit where the collagenase and divalent components are held in separate containers until just prior to use. The cellular fractions isolated in this manner may be used in autologous fat grafts in therapeutic applications.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: May 1, 2018
    Assignee: Antria, Inc.
    Inventor: Shahram Rahimian
  • Publication number: 20160228607
    Abstract: Methods and kits for producing cellular fractions enriched in adipose derived stem cells. Methods are provided where adipose tissue obtained from liposuction is enzymatically treated using a solution containing collagenase and divalent cations prior to the application of traditional methods of stromal-vascular fraction isolation. The enzymatic solutions may contain collagenase types I and II to a final concentration of about 0.001 mg/ml to 0.010 mg/ml. The divalent cations may be present as calcium, magnesium, and zinc chloride. The final concentration of calcium, magnesium, and zinc may range from about 0.001 to 0.1 micromolar; about 0.005 to 0.5 micromolar; and about 0.0015 to 0.15 micromolar, respectively. The enzymatic solutions may be generated using a kit where the collagenase and divalent components are held in separate containers until just prior to use. The cellular fractions isolated in this manner may be used in autologous fat grafts in therapeutic applications.
    Type: Application
    Filed: April 18, 2016
    Publication date: August 11, 2016
    Applicant: Antria, Inc.
    Inventor: Shahram Rahimian
  • Publication number: 20160130557
    Abstract: Methods and kits for producing cellular fractions enriched in adipose derived stem cells. Methods are provided where adipose tissue obtained from liposuction is enzymatically treated using a solution containing collagenase and divalent cations prior to the application of traditional methods of stromal-vascular fraction isolation. The enzymatic solutions may contain collagenase types I and II to a final concentration of about 0.001 mg/ml to 0.010 mg/ml. The divalent cations may be present as calcium, magnesium, and zinc chloride. The final concentration of calcium, magnesium, and zinc may range from about 0.001 to 0.1 micromolar; about 0.005 to 0.5 micromolar; and about 0.0015 to 0.15 micromolar, respectively. The enzymatic solutions may be generated using a kit where the collagenase and divalent components are held in separate containers until just prior to use. The cellular fractions isolated in this manner may be used in autologous fat grafts in therapeutic applications.
    Type: Application
    Filed: January 5, 2016
    Publication date: May 12, 2016
    Applicant: Antria, Inc.
    Inventor: Shahram Rahimian
  • Publication number: 20140162355
    Abstract: Methods and kits for producing cellular fractions enriched in adipose derived stem cells. Methods are provided where adipose tissue obtained from liposuction is enzymatically treated using a solution containing collagenase and divalent cations prior to the application of traditional methods of stromal-vascular fraction isolation. The enzymatic solutions may contain collagenase types I and II to a final concentration of about 0.001 mg/ml to 0.010 mg/ml. The divalent cations may be present as calcium, magnesium, and zinc chloride. The final concentration of calcium, magnesium, and zinc may range from about 0.001 to 0.1 micromolar; about 0.005 to 0.5 micromolar; and about 0.0015 to 0.15 micromolar, respectively. The enzymatic solutions may be generated using a kit where the collagenase and divalent components are held in separate containers until just prior to use. The cellular fractions isolated in this manner may be used in autologous fat grafts in therapeutic applications.
    Type: Application
    Filed: December 9, 2013
    Publication date: June 12, 2014
    Applicant: ANTRIA, INC.
    Inventor: Shahram Rahimian