Abstract: In a method is provided for removing a material from a substrate, a plasma is generated at atmospheric pressure. The plasma includes an energetic species reactive with one or more components of the material. The plasma is flowed from an outlet as a plasma plume that includes periodic regions of high plasma density and low plasma density. The material is exposed to the plasma plume. At least one component of the material reacts with the energetic species, and at least one other component of the material is physically impacted and moved by one or more of the regions of high plasma density.
Abstract: In a method is provided for removing a material from a substrate, a plasma is generated at atmospheric pressure. The plasma includes an energetic species reactive with one or more components of the material. The plasma is flowed from an outlet as a plasma plume that includes periodic regions of high plasma density and low plasma density. The material is exposed to the plasma plume. At least one component of the material reacts with the energetic species, and at least one other component of the material is physically impacted and moved by one or more of the regions of high plasma density.
Abstract: An atmospheric pressure plasma source includes a body including a distal end, a blade extending from the distal end and terminating at a blade edge, a plasma-generating unit, and a plasma outlet communicating with the plasma-generating unit and positioned at the distal end. The plasma outlet is oriented at a downward angle generally toward the blade edge, wherein the plasma outlet provides a plasma path directed generally toward the blade edge. The plasma may be applied to the coating at an interface between the coating and an underlying substrate. While applying the plasma, the blade is moved into contact with the coating at the interface, wherein the blade assists in separating the coating from the substrate while one or more components of the coating react with energetic species of the plasma.
Abstract: An atmospheric pressure plasma source includes a body including a distal end, a blade extending from the distal end and terminating at a blade edge, a plasma-generating unit, and a plasma outlet communicating with the plasma-generating unit and positioned at the distal end. The plasma outlet is oriented at a downward angle generally toward the blade edge, wherein the plasma outlet provides a plasma path directed generally toward the blade edge. The plasma may be applied to the coating at an interface between the coating and an underlying substrate. While applying the plasma, the blade is moved into contact with the coating at the interface, wherein the blade assists in separating the coating from the substrate while one or more components of the coating react with energetic species of the plasma.
Abstract: An atmospheric pressure plasma source includes a body including a distal end, a blade extending from the distal end and terminating at a blade edge, a plasma-generating unit, and a plasma outlet communicating with the plasma-generating unit and positioned at the distal end. The plasma outlet is oriented at a downward angle generally toward the blade edge, wherein the plasma outlet provides a plasma path directed generally toward the blade edge. The plasma may be applied to the coating at an interface between the coating and an underlying substrate. While applying the plasma, the blade is moved into contact with the coating at the interface, wherein the blade assists in separating the coating from the substrate while one or more components of the coating react with energetic species of the plasma.