Patents Assigned to API Corporation
-
Publication number: 20230192596Abstract: A method for producing acetaminophen may include causing p-nitrophenol to undergo an acetamination reaction to produce the acetaminophen, by passing a solution containing the p-nitrophenol through a column packed with a catalyst while also passing an acetylating agent and hydrogen through the column. The catalyst may be a supported metal catalyst in which a metal element is supported on a synthetic adsorbent, and a reaction temperature of the acetamination reaction is 0° C. to 60° C., and a reaction pressure of the acetamination reaction is 0.1 MPa to 1 MPa. With the method, it is possible to continuously produce acetaminophen safely and inexpensively with high selectivity and good yield, at a low reaction temperature and a low reaction pressure.Type: ApplicationFiled: May 14, 2021Publication date: June 22, 2023Applicant: API CORPORATIONInventors: Masato MURAI, Hirotsugu TANIIKE, Yurie KOBA
-
Patent number: 11643386Abstract: High purity 2-naphthylacetonitrile with fewer impurities can be used as a starting material or intermediate for synthesizing various pharmaceutical products, agricultural chemicals, and chemical products, and a production method thereof. A high purity 2-naphthylacetonitrile having an HPLC purity of 2-naphthylacetonitrile of not less than 95 area %, and containing naphthalene compounds represented by the formulas (a)-(j) at a content of a predetermined area % or below. A method for producing high purity 2-naphthylacetonitrile, may include: subjecting 2?-acetonaphthone to a Willgerodt reaction in the presence of an additive where necessary, and hydrolyzing the obtained amide compound to give 2-naphthylacetic acid; and reacting the 2-naphthylacetic acid obtained in the subjecting, a halogenating agent and sulfamide in the presence of a catalyst as necessary in an organic solvent to give 2-naphthylacetonitrile.Type: GrantFiled: October 28, 2020Date of Patent: May 9, 2023Assignee: API CORPORATIONInventors: Masaki Nagahama, Daiki Okado, Hirotsugu Taniike
-
Patent number: 11623943Abstract: The present invention provides a method of industrially and safely producing lacosamide high in diastereomeric excess at a high yield and a low cost. Adopting a particular isomerization-crystallization condition makes it possible to a method of industrially and safely producing lacosamide high in diastereomeric excess at a high yield and a low cost. Additionally, an intermediate efficacious for producing lacosamide is provided.Type: GrantFiled: March 9, 2021Date of Patent: April 11, 2023Assignee: API CORPORATIONInventor: Masaki Nagahama
-
Patent number: 11591577Abstract: A novel method of producing high-purity hydroxy-L-pipecolic acids in an efficient and inexpensive manner while suppressing the production of hydroxy-L-proline is provided. The method includes allowing an L-pipecolic acid hydroxylase, a microorganism or cell having the ability to produce the enzyme, a processed product of the microorganism or cell, and/or a culture liquid comprising the enzyme and obtained by culturing the microorganism or cell, to act on L-pipecolic acid as a substrate in the presence of 2-oxoglutaric acid and ferrous ion, wherein the L-pipecolic acid hydroxylase has the properties: (1) the enzyme can act on L-pipecolic acid in the presence of 2-oxoglutaric acid and ferrous ion to add a hydroxy group to the carbon atom at positions 3, 4, and/or 5 of L-pipecolic acid; and (2) the enzyme has a catalytic efficiency (kcat/Km) with L-proline that is equal to or less than 7 times the catalytic efficiency (kcat/Km) with L-pipecolic acid.Type: GrantFiled: February 17, 2021Date of Patent: February 28, 2023Assignee: API CORPORATIONInventors: Ryoma Miyake, Hiroshi Kawabata
-
Patent number: 11572551Abstract: The present invention provides a novel hydrolase that can industrially produce optically highly pure (1S,2S)-1-alkoxycarbonyl-2-vinylcyclopropane carboxylic acid with high efficiency at low costs, and a production method using the hydrolase.Type: GrantFiled: March 29, 2019Date of Patent: February 7, 2023Assignee: API CORPORATIONInventors: Toyokazu Yoshida, Koichi Ishida, Ryoma Miyake, Takanobu Iura, Hiroshi Kawabata
-
Publication number: 20230025343Abstract: The present invention provides a carbonyl reductase having the activity of reducing a carbonyl group-containing compound to convert the compound into an optically active compound, and a production method of an optically active compound using the enzyme. Specifically, a carbonyl reductase having one or more mutations in which the 54th aspartic acid, the 157th methionine, the 170th alanine, the 211th isoleucine, the 214th methionine, and the 249th methionine are each substituted by other specific amino acid in the amino acid sequence shown in SEQ ID NO: 1 or a homologue of the amino acid sequence, and a production method of an optically active compound using the same are provided.Type: ApplicationFiled: November 20, 2020Publication date: January 26, 2023Applicant: API CORPORATIONInventors: Takanobu IURA, Yasumasa DEKISHIMA, Takeshi SAKAMOTO, Mari HARA, Hirotoshi HIRAOKA, Harald GRÖGER, Jieun CHOI
-
Publication number: 20220281806Abstract: The present invention provides high purity 2-naphthylacetonitrile with fewer impurities that is useful as a starting material or intermediate for the synthesis of various pharmaceutical products, agricultural chemicals, and chemical products, and a production method thereof. A high purity 2-naphthylacetonitrile having an HPLC purity of 2-naphthylacetonitrile of not less than 95 area %, and containing naphthalene compounds represented by the formulas (a)-(j) at a content of a predetermined area % or below. A method for producing high purity 2-naphthylacetonitrile, including the following step 1 and step 2: step 1: a step of subjecting 2?-acetonaphthone to a Willgerodt reaction in the presence of an additive where necessary, and hydrolyzing the obtained amide compound to give 2-naphthylacetic acid; step 2: a step of reacting the 2-naphthylacetic acid obtained in step 1, a halogenating agent and sulfamide in the presence of a catalyst as necessary in an organic solvent to give 2-naphthylacetonitrile.Type: ApplicationFiled: May 25, 2022Publication date: September 8, 2022Applicant: API CORPORATIONInventors: Masaki NAGAHAMA, Daiki OKADO, Hirotsugu TANIIKE
-
Publication number: 20220275410Abstract: An object of the present invention is to provide a method of industrially producing a high-purity L-cyclic amino acid more inexpensively and with a high efficiency, from a cyclic amino acid having a double bond at the 1-position. The present invention provides a method in which an L-cyclic amino acid is produced by allowing a cyclic amino acid having a double bond at the 1-position to react with a specific enzyme having a catalytic ability to reduce a cyclic amino acid having a double bond at the 1-position to produce an L-cyclic amino acid.Type: ApplicationFiled: May 15, 2020Publication date: September 1, 2022Applicant: API CORPORATIONInventors: Masaharu MIZUTANI, Ryoma MIYAKE, Hiroshi KAWABATA
-
Patent number: 11396666Abstract: A method for producing a compound represented by formula (3) including bringing a carbon-carbon double bond reductase, a microorganism or cell having an ability to produce the enzyme, a processed product of the microorganism or cell, and/or a culture solution containing the enzyme which is obtained by culturing the microorganism or cell, and a carbonyl reductase, a microorganism or cell having an ability to produce the enzyme, a processed product of the microorganism or cell, and/or a culture solution containing the enzyme which is obtained by culturing the microorganism or cell into contact with a compound represented by formula (1) to obtain a compound represented by formula (3):Type: GrantFiled: April 17, 2020Date of Patent: July 26, 2022Assignee: API CORPORATIONInventors: Haruka Sasano, Takanobu Iura, Kenji Oki
-
Publication number: 20220098623Abstract: A method for producing a compound represented by formula (3) including bringing a carbon-carbon double bond reductase, a microorganism or cell having an ability to produce the enzyme, a processed product of the microorganism or cell, and/or a culture solution containing the enzyme which is obtained by culturing the microorganism or cell, and a carbonyl reductase, a microorganism or cell having an ability to produce the enzyme, a processed product of the microorganism or cell, and/or a culture solution containing the enzyme which is obtained by culturing the microorganism or cell into contact with a compound represented by formula (1) to obtain a compound represented by formula (3):Type: ApplicationFiled: April 17, 2020Publication date: March 31, 2022Applicant: API CORPORATIONInventors: Haruka SASANO, Takanobu IURA, Kenji OKI
-
Publication number: 20220009880Abstract: High purity 2-naphthylacetonitrile with fewer impurities can be used as a starting material or intermediate for synthesizing various pharmaceutical products, agricultural chemicals, and chemical products, and a production method thereof. A high purity 2-naphthylacetonitrile having an HPLC purity of 2-naphthylacetonitrile of not less than 95 area %, and containing naphthalene compounds represented by the formulas (a)-(j) at a content of a predetermined area % or below. A method for producing high purity 2-naphthylacetonitrile, may include: subjecting 2?-acetonaphthone to a Willgerodt reaction in the presence of an additive where necessary, and hydrolyzing the obtained amide compound to give 2-naphthylacetic acid; and reacting the 2-naphthylacetic acid obtained in the subjecting, a halogenating agent and sulfamide in the presence of a catalyst as necessary in an organic solvent to give 2-naphthylacetonitrile.Type: ApplicationFiled: October 28, 2020Publication date: January 13, 2022Applicant: API CORPORATIONInventors: Masaki NAGAHAMA, Daiki OKADO, Hirotsugu TANIIKE
-
Publication number: 20210403427Abstract: The present invention aims to provide a method for producing a (2S,5R)-5-(protected oxyamino)-piperidine-2-carboxylic acid derivative at a low cost that can be performed under mild reaction conditions not requiring a facility at an extremely low temperature, is safer, can control the quality of the desired product with ease, and shows good workability in the site of production. A method for producing a compound represented by the formula (2): wherein PG1 is an amino-protecting group, PG2 is an amino-protecting group, PG3 is a hydroxyl-protecting group, LG is a leaving group, and R is a hydrocarbon group having 1-8 carbon atoms and optionally having substituent(s), including a step of reacting a compound represented by the formula (1): wherein each symbol is as defined above, with a hydroxylamine derivative represented by the formula PG2NHOPG3 wherein each symbol is as defined above, in the presence of a base in a solvent.Type: ApplicationFiled: September 24, 2019Publication date: December 30, 2021Applicant: API CORPORATIONInventors: Masato MURAI, Jun TAKEHARA, Daiki OKADO
-
Patent number: 11136287Abstract: The present invention provides an industrially-preferable method for safely producing N-benzyl-2-bromo-3-methoxypropionamide at a high yield but at low cost. The method for producing of the present invention includes: in sequence, an amidation process that causes diacrylic anhydride to react with benzylamine in a solvent to obtain N-benzylacrylamide; a bromination process that causes N-benzylacrylamide to react with bromine in a solvent to obtain N-benzyl-2,3-dibromopropionamide; and a methoxylation process that causes N-benzyl-2,3-dibromopropionamide to react with methanol in the presence of a base to obtain N-benzyl-2-bromo-3-methoxypropionamide.Type: GrantFiled: November 21, 2017Date of Patent: October 5, 2021Assignee: API CORPORATIONInventors: Masaki Nagahama, Kenta Saito
-
Patent number: 11136560Abstract: The present invention provides a pipecolic acid 4-hydroxylase protein exemplified by the following (A), (B), and (C), having activity to react with L-pipecolic acid in the presence of 2-oxoglutaric acid and iron(II) ions to produce trans-4-hydroxy-L-pipecolic acid, and a method for producing 4-hydroxy amino acid, which method comprises reacting the pipecolic acid 4-hydroxylase protein, cells containing the protein, a treated product of the cells, and/or a culture liquid obtained by culturing the cells, with ?-amino acid to produce 4-hydroxy amino acid: (A) a polypeptide comprising the amino acid sequence represented by SEQ ID NO:2, 4, 6, 8, 10, 12, 16, or 18; (B) a polypeptide comprising the amino acid sequence represented by SEQ ID NO:2, 4, 6, 8, 10, 12, 16, or 18 except that one or several amino acids are deleted, substituted, and/or added, and having pipecolic acid 4-hydroxylase activity; and (C) a polypeptide having an amino acid sequence that is not less than 80% identical to the amino acid sequence repType: GrantFiled: April 6, 2018Date of Patent: October 5, 2021Assignee: API CORPORATIONInventors: Makoto Hibi, Jun Ogawa, Ryoma Miyake, Hiroshi Kawabata
-
Publication number: 20210188904Abstract: The present invention provides a method of industrially and safely producing lacosamide high in diastereomeric excess at a high yield and a low cost. Adopting a particular isomerization-crystallization condition makes it possible to a method of industrially and safely producing lacosamide high in diastereomeric excess at a high yield and a low cost. Additionally, an intermediate efficacious for producing lacosamide is provided.Type: ApplicationFiled: March 9, 2021Publication date: June 24, 2021Applicant: API CORPORATIONInventor: Masaki NAGAHAMA
-
Publication number: 20210180097Abstract: A novel method of producing high-purity hydroxy-L-pipecolic acids in an efficient and inexpensive manner while suppressing the production of hydroxy-L-proline is provided. The method includes allowing an L-pipecolic acid hydroxylase, a microorganism or cell having the ability to produce the enzyme, a processed product of the microorganism or cell, and/or a culture liquid comprising the enzyme and obtained by culturing the microorganism or cell, to act on L-pipecolic acid as a substrate in the presence of 2-oxoglutaric acid and ferrous ion, wherein the L-pipecolic acid hydroxylase has the properties: (1) the enzyme can act on L-pipecolic acid in the presence of 2-oxoglutaric acid and ferrous ion to add a hydroxy group to the carbon atom at positions 3, 4, and/or 5 of L-pipecolic acid; and (2) the enzyme has a catalytic efficiency (kcat/Km) with L-proline that is equal to or less than 7 times the catalytic efficiency (kcat/Km) with L-pipecolic acid.Type: ApplicationFiled: February 17, 2021Publication date: June 17, 2021Applicant: API CORPORATIONInventors: Ryoma MIYAKE, Hiroshi KAWABATA
-
Patent number: 10975117Abstract: The present invention provides a method of industrially and safely producing lacosamide high in diastereomeric excess at a high yield and a low cost. Adopting a particular isomerization-crystallization condition makes it possible to a method of industrially and safely producing lacosamide high in diastereomeric excess at a high yield and a low cost. Additionally, an intermediate efficacious for producing lacosamide is provided.Type: GrantFiled: November 11, 2016Date of Patent: April 13, 2021Assignee: API CORPORATIONInventor: Masaki Nagahama
-
Patent number: 10954539Abstract: A novel method of producing high-purity hydroxy-L-pipecolic acids in an efficient and inexpensive manner while suppressing the production of hydroxy-L-proline is provided. The method includes allowing an L-pipecolic acid hydroxylase, a microorganism or cell having the ability to produce the enzyme, a processed product of the microorganism or cell, and/or a culture liquid comprising the enzyme and obtained by culturing the microorganism or cell, to act on L-pipecolic acid as a substrate in the presence of 2-oxoglutaric acid and ferrous ion, wherein the L-pipecolic acid hydroxylase has the properties: (1) the enzyme can act on L-pipecolic acid in the presence of 2-oxoglutaric acid and ferrous ion to add a hydroxy group to the carbon atom at positions 3, 4, and/or 5 of L-pipecolic acid; and (2) the enzyme has a catalytic efficiency (kcat/Km) with L-proline that is equal to or less than 7 times the catalytic efficiency (kcat/Km) with L-pipecolic acid.Type: GrantFiled: September 30, 2016Date of Patent: March 23, 2021Assignee: API CORPORATIONInventors: Ryoma Miyake, Hiroshi Kawabata
-
Publication number: 20210078940Abstract: The present invention provides a method for industrially producing a highly pure aromatic nitrile compound and a highly pure aromatic carboxylic acid compound safely and highly efficiently at low costs. Compound (2) is subjected to Willgerodt reaction in the presence of an additive as necessary, and the obtained amide compound (3) is hydrolyzed and neutralized to give carboxylic acid compound (4). Carboxylic acid compound (4) is reacted with a halogenating agent in the presence of a catalyst as necessary in an organic solvent, and further reacted with an amidating agent, and the obtained amide compound (5) or (6) is reacted with a dehydrating agent to give nitrile compound (1). Alternatively, carboxylic acid compound (4) is reacted with a halogenating agent and a compound represented by the formula R6SO2R7 in the presence of a catalyst as necessary in an organic solvent to give nitrile compound (1).Type: ApplicationFiled: April 26, 2019Publication date: March 18, 2021Applicant: API CORPORATIONInventors: Masaki NAGAHAMA, Hideki OOMIYA, Daiki OKADO, Hirotsugu TANIIKE
-
Publication number: 20210024905Abstract: The present invention provides a novel hydrolase that can industrially produce optically highly pure (1S,2S)-1-alkoxycarbonyl-2-vinylcyclopropane carboxylic acid with high efficiency at low costs, and a production method using the hydrolase.Type: ApplicationFiled: March 29, 2019Publication date: January 28, 2021Applicant: API CORPORATIONInventors: Toyokazu YOSHIDA, Koichi ISHIDA, Ryoma MIYAKE, Takanobu IURA, Hiroshi KAWABATA