Patents Assigned to Apollo Diamond, Inc.
-
Patent number: 8455278Abstract: N-V centers in diamond are created in a controlled manner. In one embodiment, a single crystal diamond is formed using a CVD process, and then annealed to remove N-V centers. A thin layer of single crystal diamond is then formed with a controlled number of N-V centers. The N-V centers form Qubits for use in electronic circuits. Masked and controlled ion implants, coupled with annealing are used in CVD formed diamond to create structures for both optical applications and nanoelectromechanical device formation. Waveguides may be formed optically coupled to the N-V centers and further coupled to sources and detectors of light to interact with the N-V centers.Type: GrantFiled: November 14, 2011Date of Patent: June 4, 2013Assignee: Apollo Diamond, IncInventors: Robert C. Linares, Patrick J. Doering, William W. Dromeshauser, Bryant Linares, Alfred R. Genis
-
Patent number: 8435833Abstract: Wide bandgap devices are formed on a diamond substrate, such as for light emitting diodes as a replacement for incandescent light bulbs and fluorescent light bulbs. In one embodiment, diodes (or other devices) are formed on diamond in at least two methods. A first method comprises growing a wide bandgap material on diamond and building devices on that grown layer. The second method involves bonding a wide bandgap layer (device or film) onto diamond and building the device onto the bonded layer. These devices may provide significantly higher efficiency than incandescent or fluorescent lights, and provide significantly higher light or energy density than other technologies. Similar methods and structures result in other wide bandgap semiconductor devices.Type: GrantFiled: March 2, 2012Date of Patent: May 7, 2013Assignee: Apollo Diamond, Inc.Inventor: Robert C. Linares
-
Publication number: 20120193644Abstract: First and second synthetic diamond regions are doped with boron. The second synthetic diamond region is doped with boron to a greater degree than the first synthetic diamond region, and in physical contact with the first synthetic diamond region. In a further example embodiment, the first and second synthetic diamond regions form a diamond semiconductor, such as a Schottky diode when attached to at least one metallic lead.Type: ApplicationFiled: April 16, 2012Publication date: August 2, 2012Applicant: Apollo Diamond, IncInventor: Robert Linares
-
Publication number: 20120164786Abstract: Wide bandgap devices are formed on a diamond substrate, such as for light emitting diodes as a replacement for incandescent light bulbs and fluorescent light bulbs. In one embodiment, diodes (or other devices) are formed on diamond in at least two methods. A first method comprises growing a wide bandgap material on diamond and building devices on that grown layer. The second method involves bonding a wide bandgap layer (device or film) onto diamond and building the device onto the bonded layer. These devices may provide significantly higher efficiency than incandescent or fluorescent lights, and provide significantly higher light or energy density than other technologies. Similar methods and structures result in other wide bandgap semiconductor devices.Type: ApplicationFiled: March 2, 2012Publication date: June 28, 2012Applicant: Apollo Diamond, IncInventor: Robert C. Linares
-
Publication number: 20120163406Abstract: A laser has a laser material in thermal contact with a diamond, such that the diamond is operable to carry heat away from the laser material. In further embodiments, the diamond has a reduced nitrogen content, is a reduced carbon-13 content, is a monocrystalline or multilayer low-strain diamond, or has a thermal conductivity of greater than 2200 W/mK.Type: ApplicationFiled: March 12, 2012Publication date: June 28, 2012Applicant: Apollo Diamond, Inc.Inventor: Robert Linares
-
Patent number: 8187380Abstract: Synthetic monocrystalline diamond compositions having one or more monocrystalline diamond layers formed by chemical vapor deposition, the layers including one or more layers having an increased concentration of one or more impurities (such as boron and/or isotopes of carbon), as compared to other layers or comparable layers without such impurities. Such compositions provide an improved combination of properties, including color, strength, velocity of sound, electrical conductivity, and control of defects. A related method for preparing such a composition is also described, as well as a system for use in performing such a method, and articles incorporating such a composition.Type: GrantFiled: October 29, 2004Date of Patent: May 29, 2012Assignee: Apollo Diamond, IncInventors: Robert C. Linares, Patrick J. Doering
-
Patent number: 8158455Abstract: First and second synthetic diamond regions are doped with boron. The second synthetic diamond region is doped with boron to a greater degree than the first synthetic diamond region, and in physical contact with the first synthetic diamond region. In a further example embodiment, the first and second synthetic diamond regions form a diamond semiconductor, such as a Schottky diode when attached to at least one metallic lead.Type: GrantFiled: August 24, 2009Date of Patent: April 17, 2012Assignee: Apollo Diamond, Inc.Inventor: Robert C. Linares
-
Patent number: 8133320Abstract: A laser has a laser material in thermal contact with a diamond, such that the diamond is operable to carry heat away from the laser material. In further embodiments, the diamond has a reduced nitrogen content, is a reduced carbon-13 content, is a monocrystalline or multilayer low-strain diamond, or has a thermal conductivity of greater than 2200 W/mK.Type: GrantFiled: August 24, 2004Date of Patent: March 13, 2012Assignee: Apollo Diamond, Inc.Inventor: Robert Linares
-
Publication number: 20120058602Abstract: N-V centers in diamond are created in a controlled manner. In one embodiment, a single crystal diamond is formed using a CVD process, and then annealed to remove N-V centers. A thin layer of single crystal diamond is then formed with a controlled number of N-V centers. The N-V centers form Qubits for use in electronic circuits. Masked and controlled ion implants, coupled with annealing are used in CVD formed diamond to create structures for both optical applications and nanoelectromechanical device formation. Waveguides may be formed optically coupled to the N-V centers and further coupled to sources and detectors of light to interact with the N-V centers.Type: ApplicationFiled: November 14, 2011Publication date: March 8, 2012Applicant: Apollo Diamond, IncInventors: Robert C. Linares, Patrick J. Doering, William W. Dromeshauser, Bryant Linares, Alfred R. Genis
-
Patent number: 8129733Abstract: Gallium nitride devices are formed on a diamond substrate, such as for light emitting diodes as a replacement for incandescent light bulbs and fluorescent light bulbs. In one embodiment, gallium nitride diodes (or other devices) are formed on diamond in at least two methods. A first method comprises growing gallium nitride on diamond and building devices on that gallium nitride layer. The second method involves bonding gallium nitride (device or film) onto diamond and building the device onto the bonded gallium nitride. These devices may provide significantly higher efficiency than incandescent or fluorescent lights, and provide significantly higher light or energy density than other technologies. Similar methods and structures result in other gallium nitride semiconductor devices.Type: GrantFiled: January 26, 2006Date of Patent: March 6, 2012Assignee: Apollo Diamond, IncInventor: Robert C. Linares
-
Patent number: 8058085Abstract: N-V centers in diamond are created in a controlled manner. In one embodiment, a single crystal diamond is formed using a CVD process, and then annealed to remove N-V centers. A thin layer of single crystal diamond is then formed with a controlled number of N-V centers. The N-V centers form Qubits for use in electronic circuits. Masked and controlled ion implants, coupled with annealing are used in CVD formed diamond to create structures for both optical applications and nanoelectromechanical device formation. Waveguides may be formed optically coupled to the N-V centers and further coupled to sources and detectors of light to interact with the N-V centers.Type: GrantFiled: July 11, 2006Date of Patent: November 15, 2011Assignee: Apollo Diamond, IncInventors: Robert C. Linares, Patrick J. Doering, William W. Dromeshauser, Bryant Linares, Alfred R. Genis
-
Patent number: 8048223Abstract: The present invention provides in one example embodiment a synthetic diamond and a method of growing such a diamond on a plurality of seed diamonds, implanting the grown diamond with ions, and separating the grown diamond from the plurality of seed diamonds.Type: GrantFiled: July 21, 2005Date of Patent: November 1, 2011Assignee: Apollo Diamond, Inc.Inventors: Alfred Genis, Robert C. Linares, Patrick J. Doering
-
Patent number: 7942966Abstract: Synthetic monocrystalline diamond compositions having one or more monocrystalline diamond layers formed by chemical vapor deposition, the layers including one or more layers having an increased concentration of one or more impurities (such as boron and/or isotopes of carbon), as compared to other layers or comparable layers without such impurities. Such compositions provide an improved combination of properties, including color, strength, velocity of sound, electrical conductivity, and control of defects. A related method for preparing such a composition is also described, as well as a system for use in performing such a method, and articles incorporating such a composition.Type: GrantFiled: October 29, 2004Date of Patent: May 17, 2011Assignee: Apollo Diamond, Inc.Inventors: Robert C. Linares, Patrick J. Doering
-
Publication number: 20110054450Abstract: Masked and controlled ion implants, coupled with annealing or etching are used in CVD formed single crystal diamond to create structures for both optical applications, nanoelectromechanical device formation, and medical device formation. Ion implantation is employed to deliver one or more atomic species into and beneath the diamond growth surface in order to form an implanted layer with a peak concentration of atoms at a predetermined depth beneath the diamond growth surface. The composition is heated in a non-oxidizing environment under suitable conditions to cause separation of the diamond proximate the implanted layer. Further ion implants may be used in released structures to straighten or curve them as desired. Boron doping may also be utilized to create conductive diamond structures.Type: ApplicationFiled: November 3, 2010Publication date: March 3, 2011Applicant: Apollo Diamond, IncInventors: Robert C. Linares, Patrick J. Doering, Bryant Linares, Alfred R. Genis, William W. Dromeshauser, Michael Murray, Alicia E. Novak, John M. Abrahams
-
Patent number: 7879148Abstract: Synthetic monocrystalline diamond compositions having one or more monocrystalline diamond layers formed by chemical vapor deposition, the layers including one or more layers having an increased concentration of one or more impurities (such as boron and/or isotopes of carbon), as compared to other layers or comparable layers without such impurities. Such compositions provide an improved combination of properties, including color, strength, velocity of sound, electrical conductivity, and control of defects. A related method for preparing such a composition is also described, as well as a system for use in performing such a method, and articles incorporating such a composition.Type: GrantFiled: March 13, 2008Date of Patent: February 1, 2011Assignee: Apollo Diamond, Inc.Inventors: Robert C. Linares, Patrick J. Doering
-
Patent number: 7829377Abstract: Masked and controlled ion implants, coupled with annealing or etching are used in CVD formed single crystal diamond to create structures for both optical applications, nanoelectromechanical device formation, and medical device formation. Ion implantation is employed to deliver one or more atomic species into and beneath the diamond growth surface in order to form an implanted layer with a peak concentration of atoms at a predetermined depth beneath the diamond growth surface. The composition is heated in a non-oxidizing environment under suitable conditions to cause separation of the diamond proximate the implanted layer. Further ion implants may be used in released structures to straighten or curve them as desired. Boron doping may also be utilized to create conductive diamond structures.Type: GrantFiled: January 11, 2006Date of Patent: November 9, 2010Assignee: Apollo Diamond, IncInventors: Robert C. Linares, Patrick J. Doering, Bryant Linares, Alfred R. Genis, William W. Dromeshauser, Michael Murray, Alicia E. Novak, John M. Abrahams
-
Publication number: 20090311852Abstract: First and second synthetic diamond regions are doped with boron. The second synthetic diamond region is doped with boron to a greater degree than the first synthetic diamond region, and in physical contact with the first synthetic diamond region. In a further example embodiment, the first and second synthetic diamond regions form a diamond semiconductor, such as a Schottky diode when attached to at least one metallic lead.Type: ApplicationFiled: August 24, 2009Publication date: December 17, 2009Applicant: Apollo Diamond, Inc.Inventor: Robert Linares
-
Patent number: 7560086Abstract: Synthetic monocrystalline diamond compositions having one or more monocrystalline diamond layers formed by chemical vapor deposition, the layers including one or more layers having an increased concentration of one or more impurities (such as boron and/or isotopes of carbon), as compared to other layers or comparable layers without such impurities. Such compositions provide an improved combination of properties, including color, strength, velocity of sound, electrical conductivity, and control of defects. A related method for preparing such a composition is also described, as well as a system for use in performing such a method, and articles incorporating such a composition.Type: GrantFiled: October 29, 2004Date of Patent: July 14, 2009Assignee: Apollo Diamond, Inc.Inventors: Robert C. Linares, Patrick J Doering
-
Patent number: 7459024Abstract: Synthetic monocrystalline diamond compositions having one or more monocrystalline diamond layers formed by chemical vapor deposition, the layers including one or more layers having an increased concentration of one or more impurities (such as boron and/or isotopes of carbon), as compared to other layers or comparable layers without such impurities. Such compositions provide an improved combination of properties, including color, strength, velocity of sound, electrical conductivity, and control of defects. A related method for preparing such a composition is also described, as well as a system for use in performing such a method, and articles incorporating such a composition.Type: GrantFiled: October 29, 2004Date of Patent: December 2, 2008Assignee: Apollo Diamond, Inc.Inventors: Robert C. Linares, Patrick J. Doering
-
Publication number: 20080156256Abstract: Synthetic monocrystalline diamond compositions having one or more monocrystalline diamond layers formed by chemical vapor deposition, the layers including one or more layers having an increased concentration of one or more impurities (such as boron and/or isotopes of carbon), as compared to other layers or comparable layers without such impurities. Such compositions provide an improved combination of properties, including color, strength, velocity of sound, electrical conductivity, and control of defects. A related method for preparing such a composition is also described., as well as a system for use in performing such a method, and articles incorporating such a composition.Type: ApplicationFiled: March 13, 2008Publication date: July 3, 2008Applicant: Apollo Diamond, Inc.Inventors: Robert C. Linares, Patrick J. Doering