Abstract: The present invention relates to a graphical user interface (GUI), a synthesizer and a computer system including such a graphical user interface. In the prior art, input signals may be modified using a variety of controls including rotatable knobs or levers or switches or effected via software controls. Hitherto, the value of each signal has been represented in a dedicated manner even when signals are being combined and this adds to the complexity for a user. The present invention thus relates to a graphical user interface for displaying three or more input signals; comprising a geometric display having the number of dimensions equal to one less than the number of signals whereby each signal represents an apex of the geometric display and a cursor is disposed within the geometric display and represents the combination of the signals.
Abstract: A computing device having an improved enclosure arrangement is disclosed. One aspect of the enclosure pertains to enclosure parts that are structurally bonded together to form a singular composite structure. In one embodiment, structural glue is used to bond at least two unique parts together. Another aspect of the enclosure pertains to enclosure parts that are electrically bonded together to form a singular integrated conductive member. In one embodiment, conductive paste is used to bond at least two unique parts together. The improved enclosure is particularly useful in portable computing devices such as laptop computers.
Type:
Application
Filed:
December 29, 2006
Publication date:
May 17, 2007
Applicant:
Apple Computer, Inc.
Inventors:
Michael Kriege, Dan Hong, John DiFonzo, Stephen Zadesky, David Lynch, David Lundgren, Nick Merz
Abstract: The present invention is a computer controlled display device. In one embodiment, the display device includes a flat panel display having an input for receiving display data. Additionally, a moveable assembly may be coupled to the display. The moveable assembly may provide at least three degrees of freedom of movement for the flat panel display device. Additionally, the moveable assembly may have a cross-sectional area, which is substantially less than a cross-sectional area of a display structure of the flat panel display.
Type:
Grant
Filed:
December 19, 2003
Date of Patent:
May 15, 2007
Assignee:
Apple Computer, Inc.
Inventors:
Michael D. Hillman, Frank Tsai, Michael D. McBroom, Daniel L. McBroom, Brian T. Sudderth, Bartley K. Andre, Christopher Stringer, Daniel Riccio, Sung Kim
Abstract: An electronic device uses separate surfaces for input and output. One of the surfaces (e.g., the bottom) includes a force-sensitive touch-surface through which a user provides input (e.g., cursor manipulation and control element selection). On a second surface (e.g., the top), a display element is used to present information appropriate to the device's function (e.g., video information), one or more control elements and a cursor. The cursor is controlled through manipulation of the back-side touch-surface. The cursor identifies where on the back-side touch-surface the user's finger has made contact. When the cursor is positioned over the desired control element, the user selects or activates the function associated with the control element by applying pressure to the force-sensitive touch-surface with their finger. Accordingly, the electronic device may be operated with a single hand, wherein cursor movement and control element selection may be accomplished without lifting one's finger.
Abstract: A graphical user interface for performing color correction and methods for implementing the color correction are disclosed. The graphical user interface allows a user to adjust the colorspace of the pixels in the image. In one embodiment, a color adjustment pad allows the user to push the pixels from a particular luminance level a desired magnitude towards a desired hue. Pixels from other luminance levels are affected proportionally. The graphical user interface further allows a user to adjust the luminance of the pixels in the image. A luminance adjustment slider allows the user to adjust the luminance of pixels from a selected luminance level by a relative amount. Pixels from other luminance levels have their luminance are affected in a manner proportional to a difference between the selected luminance level value and the luminance value of the other pixel.
Abstract: Windows in a graphical user interface are automatically repositioned and resized in response to changes in a display configuration. If a window is not capable of being fully displayed within the reconfigured display area, it is constrained to fit the available space. The position of the window is varied so that it conforms to the position it occupied prior to the change in configuration so that, if the user expects to have the window at a particular position, it will remain at that position regardless of changes in the size or resolution of the display device.
Abstract: A system which utilizes the processing capabilities of the graphics processing unit (GPU) in the graphics controller. Each interlaced video field is resampled to provide full resolution and then displayed at full rate. The field pixel values are resampled as appropriate using the GPU to provide values corresponding to the locations missing from that field. The resampled values and the original values are provided to the frame buffer for final display for each field. Each of these operations is done in real time for each field of the video. Because each field has had the values resampled to provide a value for the missing locations from the other field, the final displayed image is both full resolution and full rate. In an alternate embodiment, the values of the preceding and following fields are included in the resampling operation to improve still object rendition.
Abstract: A system which utilizes the processing capabilities of the graphics processing unit (GPU) in the graphics controller. Each frame of each video stream is decoded. After decoding the compressed image is separated into an image representing the luminance and an image representing the chroma. The chroma image is resampled as appropriate using the GPU to provide chroma values corresponding to each luminance value at the proper locations. The resampled chroma image and the luminance image are properly combined to produce a 4:4:4 image, preferably in the RGB color space, and provided to the frame buffer for final display. Each of these operations is done in real time for each frame of the video.
Abstract: Some embodiments allow a video editor to spatially and temporally align two or more video sequences into a single video sequence. As used in this application, a video sequence is a set of images (e.g., a set of video frames or fields). A video sequence can be from any media, such as broadcast media or recording media (e.g., camera, film, DVD, etc.). Some embodiments are implemented in a video editing application that has a user selectable alignment operation, which when selected aligns two or more video sequences. In some embodiments, the alignment operation identifies a set of pixels in one image (i.e., a “first” image) of a first video sequence and another image (i.e., a “second” image) of a second video sequence. The alignment operation defines a motion function that describes the motion of the set of pixels between the first and second images. The operation then defines an objective function based on the motion function. The operation finds an optimal solution for the objective function.
Abstract: A system which utilizes the processing capabilities of the graphics processing unit (GPU) in the graphics controller. Each frame of each video stream is decoded and converted to RGB values. The R and B values are resampled as appropriate using the GPU to provide values corresponding to the proper, slightly displaced locations on the display device. The resampled values for R and B and the original G values are provided to the frame buffer for final display. Each of these operations is done in real time for each frame of the video. Because each frame has had the color values resampled to provide a more appropriate value for the actual subpixel location the final displayed image more accurately reproduces the original color image.
Abstract: Electrical mounting boards and methods for their fabrication and use are disclosed herein. In particular, such mounting boards embodiments utilize hybrid ground lines interconnected through a substrate core to form multilayer ground grids. Such hybrid ground lines include groups of substantially parallel ground lines configured such that the groups of ground lines are positioned in transverse arrangement with other groups of ground lines formed on the same level. Such implementations have many uses, including, but not limited to, the ability to more efficiently route signal lines and connect electrical components on a circuit board.
Inventors:
Bartley K. Andre, Daniel J. Coster, Daniele De Iuliis, Richard P. Howarth, Jonathan P. Ive, Duncan Robert Kerr, Shin Nishibori, Matthew Dean Rohrbach, Douglas B. Satzger, Calvin Q. Seid, Christopher J. Stringer, Eugene Antony Whang, Rico Zorkendorfer
Inventors:
Bartley K. Andre, Daniel J. Coster, Daniele De Iuliis, Richard P. Howarth, Jonathan P. Ive, Steve Jobs, Duncan Robert Kerr, Shin Nishibori, Matthew Dean Rohrbach, Douglas B. Satzger, Calvin Q. Seid, Christopher J. Stringer, Eugene Antony Whang, Rico Zorkendorfer
Inventors:
Bartley K. Andre, Daniel J. Coster, Daniele De Iuliis, Richard P. Howarth, Jonathan P. Ive, Steve Jobs, Duncan Robert Kerr, Shin Nishibori, Matthew Dean Rohrbach, Douglas B. Satzger, Calvin Q. Seid, Christopher J. Stringer, Eugene Antony Whang, Rico Zorkendorfer
Inventors:
Bartley K. Andre, Daniel J. Coster, Daniele De Iuliis, Richard P. Howarth, Jonathan P. Ive, Steve Jobs, Duncan Robert Kerr, Shin Nishibori, Matthew Dean Rohrbach, Douglas B. Satzger, Calvin Q. Seid, Christopher J. Stringer, Eugene Antony Whang, Rico Zorkendorfer
Inventors:
Bartley K. Andre, Daniel J. Coster, Daniele De Iuliis, Richard P. Howarth, Jonathan P. Ive, Steve Jobs, Duncan Robert Kerr, Shin Nishibori, Matthew Dean Rohrbach, Douglas B. Satzger, Calvin Q. Seid, Christopher J. Stringer, Eugene Antony Whang, Rico Zorkendorfer
Abstract: Systems and methods for returning windows to an original location are described. When springing already open windows to a new location on a display space, it is desired to return that window to its original location for certain situations. A list is provided when the springing operation is initialized which captures information used to return the sprung window. According to exemplary embodiments, the relocation of various windows is tracked to ensure that each window is returned to an original location.
Inventors:
Bartley K. Andre, Daniel J. Coster, Daniele De luliis, Richard P. Howarth, Steve Jobs, Jonathan P. Ive, Duncan Robert Kerr, Shin Nishibori, Matthew Dean Rohrbach, Douglas B. Satzger, Calvin Q. Seid, Christopher J. Stringer, Eugene Antony Whang, Rico Zörkendörfer
Inventors:
Bartley K. Andre, Daniel J. Coster, Daniele De Iuliis, Richard P. Howarth, Jonathan P. Ive, Steve Jobs, Duncan Robert Kerr, Shin Nishibori, Matthew Dean Rohrbach, Douglas B. Satzger, Calvin Q. Seid, Christopher J. Stringer, Eugene Antony Whang, Rico Zorkendorfer
Inventors:
Bartley K. Andre, Daniel J. Coster, Daniele De Iuliis, Richard P. Howarth, Jonathan P. Ive, Steve Jobs, Duncan Robert Kerr, Shin Nishibori, Matthew Dean Rohrbach, Douglas B. Satzger, Calvin Q. Seid, Christopher J. Stringer, Eugene Antony Whang, Rico Zorkendorfer