Patents Assigned to Applied Medical Resources Corporation
  • Patent number: 10847057
    Abstract: A simulated rectum model for training transanal minimally invasive surgery is provided. The model includes three substantially concentric layers, a first layer, a second layer and a third layer, made of electrically conductive hydrogel material sized and configured to simulate a mucosal layer, a muscle layer and a mesorectum layer, respectively. Each layer is made of a dual interpenetrating cross-linked network having a ratio of covalently cross-linked acrylamide to ionically cross-linked alginate. The ratio for each layer is selected for the desired adhesion properties between two adjacent layers. The model is capable of expanding in size when insufflated and simulating a billowing condition. When the model is dissected with electrosurgical instruments, the hydrogel material realistically emits vapor simulating smoke and causes char to build up on instruments. Artificial polyps and transverse folds are molded on the inner surface of the model.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: November 24, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Natasha Felsinger, Milan Draganov
  • Patent number: 10842530
    Abstract: Systems and methods for preventing the seeding of cancerous cells during morcellation of a tissue specimen inside a patient's body and removal of the tissue specimen from inside the patient through a minimally-invasive body opening to outside the patient are provided. One system includes a cut-resistant tissue guard removably insertable into a containment bag. The tissue specimen is isolated and contained within the containment bag and the guard is configured to protect the containment bag and surrounding tissue from incidental contact with sharp instrumentation used during morcellation and extraction of the tissue specimen. The guard is adjustable for easy insertion and removal and configured to securely anchor to the body opening. Protection-focused and containment-based systems for tissue removal are provided that enable minimally invasive procedures to be performed safely and efficiently.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: November 24, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Serene Wachli, Tracy Breslin, Steven C. Kessler, Nikolai Poulsen, Nathan Collins, Alexandra Do, Eduardo Bolanos, Boun Pravong, Patrick Elliott, Matthew A. Wixey, Wayne Young, Jacob J. Filek, Kevin B. Castelo, Adam Hoke, Gregory K. Hofstetter, Jacqueline DeMarchi, Amy Garces, Heidi Holmes, Alexander Sheehan
  • Patent number: 10818201
    Abstract: Simulated tissue structures for practicing surgical techniques and methods of manufacturing those structures are provided. In particular, a realistic organ model or simulated tissue portion for practicing the removal of a tumor or other undesired tissue followed by suturing a remnant defect as part of the same surgical procedure is provided. The simulated tissue structures include a polyp simulation having a suturable mesh layer that is separable from a defect layer. A simulated colon model with interchangeable and suturable tissue pods is also provided as is a fully suturable rectum model and a rectum model with integrative suturable and removable polyp zones.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: October 27, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Gregory K. Hofstetter, Tracy Breslin, Nikolai Poulsen, Khodr Saleh
  • Patent number: 10796606
    Abstract: A simulated dissectible tissue for surgical training is provided. The simulated tissue comprises a silicone gel layer encapsulated within a silicone shell. A simulated anatomical structure is embedded together with the silicone gel layer within the sealed shell. The silicone shell as well as the silicone gel layer may include a deadening agent. Further processing of the silicone gel layer may include adding alcohol and, optionally, heating the mixture. The simulated dissectible tissue may be formed into a specific tissue or organ model for practicing surgical skills. The user practices incising through the outer layer and separating the shell layer along a dissection plane defined by the silicone gel layer to gain visibility of the embedded simulated anatomical structures. The silicone gel layer simulates dissectible tissue and has glossy and elastic properties that provide a realistic dissectible tissue layer for emulating skeletonization of the simulated anatomical structures contained therein.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: October 6, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Natasha Felsinger, Katie Black, Tracy Breslin
  • Patent number: 10792092
    Abstract: A bipolar electrosurgical fusion/sealer and dissector is provided that is arranged to simultaneously fuse and cut tissue captured between jaws of the instrument. The jaws include particularly positioned, shaped and/or oriented electrodes along with a compressible landing pad to perform the simultaneous fusion and cutting of tissue. An electrosurgical generator is arranged to supply RF energy through the instrument and monitors a phase angle of the supplied RF energy and adjusts or terminates the supplied RF energy based on the monitored phase angle to optimally fuse and dissect the tissue.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: October 6, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Daniel McFarland, Michael Whitlock, Patrick Elliott, Duy Nguyen, Aaron Jimenez, Andrea Chan, Vanna Lee
  • Patent number: 10792038
    Abstract: A surgical stapler is provided that includes a spring loaded lift that automatically adjusts a staple cartridge and/or staple formation between a range of sizes. The lift is automatically released as the staple firing mechanism begins its forward translation of the firing sequence. The automatic one-way adjustment also adjusts the staple cartridge while maintaining the cartridge parallel to the anvil to provide consistent staple formations.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: October 6, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Matthew M. Becerra, Steven E. Decker, Timothy M. Hopkins, Atal C. Patel, Babak D. Jasemian
  • Patent number: 10765832
    Abstract: The invention primarily is directed to a medical tubing adapted for insertion into a body tissue or cavity and method of manufacturing different variations of the tubing along a length of the tubing. The tubing comprises a plurality of individual, discrete, generally ring-shaped elements arranged in series and fused or bonded together forming a continuous tubular structure. The ring-shaped elements may include a combination of flexible and rigid ring-shaped elements assembled along different portions or sections of the tubular structure. In another aspect of the invention, the medical tubing may further comprise a secondary lumen and a pull wire to control the tubular structure. In another aspect of the invention, the ring-shaped elements may vary in diameter and/or composition in different portions or sections of the tubular structure.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: September 8, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: John R. Brustad, Said S. Hilal, Nabil Hilal, Charles C. Hart, Gary M. Johnson, Serene Wachli, Ghassan Sakakine, Donald L. Gadberry, Edward D. Pingleton, Matthew N. Petrime, Payam Adlparvar, Carl B. Hadley, Kenneth K. Vu
  • Patent number: 10755602
    Abstract: A simulated tissue structure for surgical training is provided. The simulated tissue structure includes a first layer made of silicone and a second layer made of silicone interconnected by a third layer made of polyester fiber that is embedded in part in the first layer and in part in the second layer to create a mechanical linkage between the first layer and the second layer. Part of the third layer that is adjacent to the first layer and part of the third layer that is adjacent to the second layer includes fiber strands coated in silicone. An inclusion that mimics an anatomical structure is located between the first layer and the second layer. The third layer of polyester fibers provides a realistic dissection plane for the practice of the surgical excision of the inclusion.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: August 25, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Gregory K. Hofstetter, Katie Black
  • Patent number: 10733908
    Abstract: A surgical simulator for surgical training is provided. The simulator includes a frame defining an enclosure and a simulated tissue model located inside an enclosure. The simulated tissue model is adapted for practicing hysterectomies and includes at least a simulated uterus and a simulated vagina. The simulated tissue model is suspending inside the enclosure with two planar sheets of silicone such that the tissue model is located between the two sheets each of which form a fold and are in turn connected to the frame. The frame may be shaped like a cylinder and located inside a cavity of a larger laparoscopic trainer having a penetrable simulated abdominal wall. The tissue model is interchangeable and accessible laterally through an aperture provided in a support leg of the trainer.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: August 4, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Katie Black, Gregory Hofstetter, Natasha Felsinger
  • Patent number: 10720084
    Abstract: A surgical simulator for surgical training is provided. The simulator includes a frame defining an enclosure and a simulated tissue model located inside the enclosure. The simulated tissue model is adapted for practicing a number of surgical procedures including but not limited to transanal excisions and transvaginal hysterectomies. The simulated tissue model includes one more components and is interchangeably connected to the frame with fasteners configured to pass through apertures in the frame to suspend the simulated tissue model within the frame. The enclosure of the frame is increasingly laterally constricted along the longitudinal axis to progressively increase the confinement of the components of the simulated tissue model.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: July 21, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Katie Black, Gregory K. Hofstetter, Natasha Felsinger, Tracy Breslin, Serene Wachli, Sean Kenneday
  • Patent number: 10706743
    Abstract: A simulated dissectible tissue model for practicing surgical skills is provided. The simulated tissue comprises a simulated anatomical structure, such as one or more artificial vessel, embedded with a silicone gel layer between two silicone layers. The simulated dissectible tissue, with or without a simulated anatomical structure, is connected to one or more artificial organ via a fiberfill layer. The fiberfill layer includes a plurality of entangled fibers embedded between two adjacent silicone layers. The fiberfill layer creates a dissection plane that permits the one or more artificial organ to be removed by spreading apart and selectively dissecting the chains of entangled fibers. Artificial nerves may be included in fiberfill layer.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: July 7, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Katie Black, Natasha Felsinger, Tracy Breslin, Gregory K. Hofstetter
  • Patent number: 10685586
    Abstract: Simulated tissue structures and methods of making them are disclosed. An elastic first material is placed in tension. An elastic second material is adhered to the first material while the first material is in tension. The adhered second material and the first material in tension forms a first shape of the simulated tissue structure. Tension on the first material is released. In releasing the tension of the first material, a force is exerted on the adhered second material bring the combination of the first material and the second material into a second shape. The first shape is maintained by a mold or mandrel and the second shape is the desired shape of the simulated tissue structure.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: June 16, 2020
    Assignee: Applied Medical Resources Corporation
    Inventor: Gregory K. Hofstetter
  • Patent number: 10674896
    Abstract: The surgical robotic access system provides access for robotic instruments and/or actuators including the introduction, operation and withdrawal of such robotic manipulators into a body cavity without permitting the escape of pressurized fluid or gas. The surgical robotic access system also provides a multi-faceted range of movement without touching or effecting pressure on the opening in the patient's body cavity.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: June 9, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Matthew Becerra, Jeremy Albrecht, Timothy Hopkins, Brian Pugh, Brian Hong, Bruno Vu
  • Patent number: 10679520
    Abstract: A surgical training device is provided. The training device includes a model for practicing the passage of needle and suture. The model includes a base with a plurality of openings configured to receive a plurality of suture tabs. The suture tabs are made of elastomeric material. Some suture tabs includes pre-formed tab apertures for the passage of a suture. Other suture tabs include a penetrable area through which a suture needle may penetrate for passing a suture. The suture tabs are movable with respect to the base to orientate them at different angles with respect to the base. The base itself may include portions that are angled with respect to each other. The suture tabs are movable with respect to the base to pull, expose or open the tab apertures and surfaces. Some of the tab apertures are slits that open upon being pulled relative to the base requiring the user to practice holding the tab while passing the needle through the tab.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: June 9, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Gregory K. Hofstetter, Tracy Breslin, Khodr Saleh, Natasha Felsinger, Katie Black, Milan Draganov
  • Patent number: 10657845
    Abstract: A simulated abdominal wall model that is ideal for practicing laparoscopic first entry surgical techniques is provided. The model includes a simulated abdominal wall portion captured between two frame elements of a support. The support is connectable to a surgical trainer. When connected to the trainer, the model provides a penetrable abdominal tissue portion for accessing an internal cavity of the trainer. The simulated abdominal wall includes a plurality of layers including a skin layer, a fabric posterior rectus sheath layer, a simulated fat layer of low-resilience polyurethane foam and at least two layers that provide distinctive haptic feedback upon penetration of the simulated transversalis fascia and muscle layers. The simulated abdominal wall includes a simulated umbilicus across several layers of simulated tissue.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: May 19, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Katie Black, Nikolai Poulsen, Heidi Holmes, Natasha Felsinger, Tracy Breslin, Kennii Pravongviengkham, Boun Pravong, Eduardo Bolanos, Zoran Falkenstein, Charles C. Hart, Tina Talwar
  • Patent number: 10610225
    Abstract: A powered handle for a surgical stapler can have a drive system including an electric motor. The powered handle can include a manual articulation mechanism to articulate a jaw assembly coupled to a reload shaft connected to the handle. The manual articulation mechanism can include a ball screw mechanism that translates an articulation member responsive to rotation of an articulation knob. The articulation mechanism includes a release function that allows the jaw assembly to return to a longitudinally centered orientation. The powered handle includes a battery pack serving as a power supply for the drive system. A control system can control actuation of the motor based on user inputs and operating parameters of the stapler. The powered handle can include a manual return mechanism.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: April 7, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Christina N. Reed, Matthew M. Becerra, Andrew J. McCarthy, Scott Zimmerman, Joshua M. Schober, Steven E. Decker, Kevin Hudson, Andy Pham
  • Patent number: 10595866
    Abstract: A handle assembly for a surgical stapler can comprise a rotatable actuation shaft. The actuation shaft can have a first rotational orientation in which it can actuate a jaw assembly in a repeatable open and close mode, a second rotational orientation in which it can actuate a jaw assembly in a staple firing mode, and a third rotational orientation in which it can actuate a jaw assembly in a reversing mode. The handle assembly can include a rotational mechanism arranged to discretely position the rotatable actuation shaft in one of the rotational orientations. The rotational mechanism can be arranged for single handed operation such as by including a slidable switch or selector to rotate the actuation shaft.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: March 24, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Atal Patel, Jonathan Covach, Christina N. Reed, Gary M. Johnson, Matthew M. Becerra
  • Patent number: 10575840
    Abstract: A retractor/protector suitable for use in a surgical incision or a natural orifice comprises a longitudinal axis defining an instrument access channel extending from a proximal end to a distal end; a flexible outer ring; an inner ring; a flexible sheath extending between the outer ring and the inner ring; and at least one rigid segment adapted to attach to the flexible outer ring to thereby increase the rigidity of the outer ring. Embodiments of the retractor/protector are described that have interlocking and non-interlocking rigid segments. Embodiments are also described that have bases that insert into or under the flexible outer ring in addition to or in lieu of rigid segments to increase rigidity and/or provide support for a detachable cap.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: March 3, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Jeremy J. Albrecht, Matthew M. Becerra, Eric Nguyen
  • Patent number: 10568658
    Abstract: The invention is directed to a bladeless trocar obturator to separate or divaricate body tissue during insertion through a body wall. In one aspect, the obturator of the invention comprises a shaft extending along an axis between a proximal end and a distal end; and a bladeless tip disposed at the distal end of the shaft and having a generally tapered configuration with an outer surface, the outer surface extending distally to a blunt point with a pair of side sections having a common shape and being separated by at least one intermediate section, wherein each of the side sections extends from the blunt point radially outwardly with progressive positions proximally along the axis, and the shaft is sized and configured to receive an optical instrument having a distal end to receive an image of the body tissue. With this aspect, the tapered configuration facilitates separation of different layers of the body tissue and provides proper alignment of the tip between the layers.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: February 25, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Henry Kahle, Arkadiusz A. Strokosz, Kimball B McGinley, Scott V. Taylor, Gary M. Johnson, John R. Brustad
  • Patent number: 10568659
    Abstract: A guard for providing a cut-resistant pathway through a body orifice or incision to circumferentially protect tissue at the margin is provided. The guard is made of flexible, cut-resistant mesh material having a plurality of interwoven thermosetting filaments. The guard has a central lumen and at least one flared end. The flared end, which serves to anchor the guard in the body opening, is deformable into a reduced configuration to facilitate its insertion and removal. The layer of mesh stretches laterally to increase the diameter of the central lumen. The flexibility and expandability of the guard allows the guard to conform to body openings of different sizes. The guard may include a drawstring to cinch the flared distal end from the proximal end. The guard is thermoset with the flared distal end that is biased to spring back to its normal, undeformed configuration when released from a deformed configuration.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: February 25, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Alexandra Do, Boun Pravong, Serene Wachli