Patents Assigned to Applied Optoelectronics, Inc.
  • Patent number: 10983291
    Abstract: The present disclosure is generally directed to a holder element, also generally referred to herein as a welding element, configured to couple an optical coupling receptacle to a substrate and provide an integrated optical arrangement to redirect light received from the optical coupling receptacle along a receive light path to an output light path that is offset from the receive light path.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: April 20, 2021
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kevin Liu, Kai-Sheng Lin, Hsiu-Che Wang
  • Patent number: 10948671
    Abstract: The present disclosure is generally directed to a multi-channel TOSA arrangement with a housing that utilizes a feedthrough device with at least one integrated mounting surface to reduce the overall dimensions of the housing. The housing includes a plurality of sidewalls that define a hermetically-sealed cavity therebetween. The feedthrough device includes a first end disposed in the hermetically-sealed cavity of the housing and a second end extending from the cavity away from the housing. The feedthrough device provides the at least one integrated mounting surface proximate the first end within the hermetically-sealed cavity. At least a first laser diode driver (LDD) chip mounts to the at least one integrated mounting surface of the feedthrough device. A plurality of laser arrangements are also disposed in the hermetically-sealed cavity proximate the first LDD chip and mount to, for instance, a LD submount supported by a thermoelectric cooler.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: March 16, 2021
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Kevin Liu, Hao-Chiang Cheng
  • Patent number: 10950651
    Abstract: The present disclosure is generally directed to an optical transceiver that includes a multi-channel on-board ROSA arrangement that includes an optical demultiplexer, e.g., an arrayed waveguide grating (AWG) and an array of photodiodes disposed on a same substrate. The array of photodiodes may be optically aligned with an output port of the optical demultiplexer and be configured to detect channel wavelengths and output a proportional electrical signal to an amplification circuit, e.g., a transimpedance amplifier. Each of the photodiodes can include an integrated lens configured to increase the alignment tolerance between the demultiplexer and the light sensitive region such that relatively imprecise bonding techniques, e.g., die bonding, may be utilized while still maintaining nominal optical power.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: March 16, 2021
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Hsiu-Che Wang, Elsie Marentes, Qin Li
  • Patent number: 10951005
    Abstract: In general the present disclosure is directed to a temperature control device, e.g., a TEC, that includes a top plate with at least first and second contact pads to allow for a soldering process to attach optical components to the first contact pad without causing one or more layers of the second contact pad to reflow and solidify with an uneven mounting surface. Thus, optical components such as a focus lens can be mounted to the second contact pad via, for instance, thermal epoxy. This avoids the necessity of a submount to protect the focus lens from the relatively high heat introduced during a soldering process as well as maintain the flatness of the second contact pad within tolerance so that the mounted focus lens optically aligns by virtue of its physical location/orientation with other associated optical components coupled to the first contact pad, e.g., a laser diode.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: March 16, 2021
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Chong Wang, Kai-Sheng Lin, YongXuan Liang
  • Patent number: 10928600
    Abstract: The present disclosure is generally directed to a multi-channel TOSA arrangement with a housing that utilizes a feedthrough device with at least one integrated mounting surface to reduce the overall dimensions of the housing. The housing includes a plurality of sidewalls that define a hermetically-sealed cavity therebetween. The feedthrough device includes a first end disposed in the hermetically-sealed cavity of the housing and a second end extending from the cavity away from the housing. The feedthrough device provides the at least one integrated mounting surface proximate the first end within the hermetically-sealed cavity. At least a first laser diode driver (LDD) chip mounts to the at least one integrated mounting surface of the feedthrough device. A plurality of laser arrangements are also disposed in the hermetically-sealed cavity proximate the first LDD chip and mount to, for instance, a LD submount supported by a thermoelectric cooler.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: February 23, 2021
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kevin Liu, Kai-Sheng Lin, Ziliang Cai
  • Patent number: 10884201
    Abstract: The present disclosure is generally directed to an on-board ROSA arrangement where a fiber receptacle element, optical components such as optical de-multiplexer (e.g., an arrayed waveguide grating (AWG)), turning mirror, photodiodes and light receiving chip are mounted to a common substrate. The fiber receptacle element includes a body that defines a slot to at least partially receive an end of the substrate and mount thereto. The body of the fiber receptacle further includes an aperture that extends through the body to receive an optical fiber and/or associated connector and align the same with ROSA components mounted on a surface of the substrate. The fiber receptacle body may be solid, e.g., formed from a single, monolithic piece of material, and may be manufactured from metal, plastic or other suitably rigid material.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: January 5, 2021
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kevin Liu, Kai-Sheng Lin, Hao-Chiang Cheng
  • Patent number: 10859775
    Abstract: In general, the present disclosure is directed to an optical turning mirror for receiving channel wavelengths along a first optical path and reflecting the same towards a fiber or photodetector (PD) without the necessity of disposing a highly reflective layer to increase reflectivity. In more detail, the optical turning mirror includes a substantially transparent body, e.g., capable of passing at least 80% of incident wavelengths, that defines an input region with integrated focus lens(es) for receiving channel wavelengths along a first optical path and a reflective surface disposed opposite the input region to direct/launch received channel wavelengths along a second optical path towards an output interface having an angled light-transmissive surface, with the second optical path extending substantially transverse relative to the first optical path.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: December 8, 2020
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Ziliang Cai, Hao-Chiang Cheng
  • Patent number: 10833775
    Abstract: In general, the present disclosure is directed to a transmitter optical subassembly (TOSA) module for use in an optical transceiver or transmitter that includes a magnetically-shielded optical isolator to minimize or otherwise reduce magnetization of TOSA components. An embodiment of the present disclosure includes a TOSA housing with magnetic shielding at least partially surrounding an optical isolator, with the magnetic shielding reflecting associated magnetic energy away from components, such as a metal TOSA housing or components disposed therein, that could become magnetized and adversely impact the magnetic flux density of the magnetic field associated with the optical isolator.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: November 10, 2020
    Assignee: Applied Optoelectronics Inc.
    Inventors: Chong Wang, Kai-Sheng Lin, Yongxuan Liang, I-Lung Ho
  • Patent number: 10811839
    Abstract: The present disclosure is generally directed to a TO can laser package that includes an off-center focus lens integrated into a lens cap to compensate displacement of an associated laser diode. The TO can laser package includes a TO header with a mounting structure for directly electrically coupling an associated laser diode to electrical leads/pins without the use of an intermediate interconnect. The mounting structure displaces the laser diode such that an emission surface, and more particularly, an origin thereof, is displaced/offset relative to a center of the TO header. The integrated lens cap includes a focus lens with an optical center that is offset from a center of the TO header at a distance that is substantially equal to the displacement of the laser diode. Thus, the displacement of the laser diode is compensated for by the off-center focus lens to minimize or otherwise reduce optical misalignment.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: October 20, 2020
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Chong Wang, Shih-Chia Liu
  • Patent number: 10788690
    Abstract: This present disclosure is generally directed to an optical isolator array with a magnetic base that allows for mounting and alignment of N number of optical isolators modules within an optical subassembly module. In an embodiment, the magnetic base provides at least one mounting surface for coupling to N number of optical isolators, with N being equal to an optical channel count for the optical subassembly (e.g., 4-channels, 8-channels, and so on). The magnetic base includes an overall width that allows for a desired number of optical isolators to get mounted thereon. Each optical isolator can be uniformly disposed along the same axis on the magnetic base and at a distance D from adjacent optical isolators. An adhesive such as ultraviolet-curing (UV-curing) optical adhesives may be used to secure each optical isolator at a predefined position and increase overall structural integrity.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: September 29, 2020
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Kevin Liu, Ziliang Cai
  • Patent number: 10714890
    Abstract: The present disclosure is generally directed to a multi-channel TOSA with vertically-mounted MPDs to reduce TOSA housing dimensions and improve RF driving signal quality. In more detail, a TOSA housing consistent with the present disclosure includes at least one vertical MPD mounting surface that extends substantially transverse relative to a LD mounting surface, with the result being that a MPD coupled to the vertical MPD mounting surface gets positioned above an associated LD coupled to the LD mounting surface. The vertically-mounted MPD thus makes regions adjacent an LD that would otherwise be utilized to mount an MPD available for patterning of conductive RF traces to provide an RF driving signal to the LD. The conductive RF traces may therefore extend below the vertically-mounted MPD to a location that is proximate the LD to allow for relatively short wire bonds therebetween.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: July 14, 2020
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Hsiu-Che Wang, Kevin Liu
  • Patent number: 10698168
    Abstract: The present disclosure is generally directed to an optical transceiver module that includes a mounting section for aligning and coupling to associated TOSA modules. In particular, an embodiment of the present disclosure includes TOSA and ROSA components disposed on a printed circuit board assembly (PCBA). The PCBA includes a plurality of grooves at a optical coupling end to provide a TOSA mounting section. Each of the grooves provides at least one mating surface to receive and couple to an associated TOSA module. Opposite the optical coupling end, the PCBA includes an electric coupling section for coupling to, for example, a transmit (RX) circuit that provides one or more electrical signals to drive TOSA modules coupled to the TOSA mounting section.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: June 30, 2020
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Yi Wang, Ziliang Cai
  • Patent number: 10636954
    Abstract: In general, the present disclosure is directed to a thermoelectric cooler (TEC) that includes a top plate or bottom plate being formed of a high thermal conductivity material, and the other of the top plate and bottom plate being formed of a low thermal conductivity material, with the high thermal conductivity material having a thermal conductivity at least twice, and preferably five times, that of the thermal conductivity of the low thermal conductivity material. This disparity in thermal conductivity between the top plate and bottom plate materials may be referred to herein as asymmetric thermal performance.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: April 28, 2020
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Qin Li, Chong Wang
  • Patent number: 10634844
    Abstract: A multi-channel transceiver, consistent with the present disclosure, includes a multiplexer/demultiplexer (MUX/DEMUX) device configured to be shared by, and support operations of, a multi-channel transmitter optical subassembly (TOSA) and multi-channel receiver optical subassembly (ROSA) within a single transceiver housing. The shared MUX/DEMUX device may be referred to herein as simply a shared AWG for ease of description and not for purposes of limitation. The shared AWG receives optical signals from a plurality of TOSA modules at different channel wavelengths via a plurality of mux input ports, and then combines the optical signals into a multiplexed optical signal, with the multiplexed optical signal being output via a mux output port. In addition, the shared AWG receives an optical signal having different channel wavelengths at a demux input port and separates channel wavelengths to be output via a plurality of demux output ports.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: April 28, 2020
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Qin Li, Chong Wang
  • Patent number: 10608408
    Abstract: The present disclosure is generally directed to a laser subassembly for use in a TOSA module that includes an integrated impedance matching network to enable a plurality of selectable resistance configurations to ensure the driving circuit and laser emitter of the TOSA module have matching, or substantially matching, impedances. The laser subassembly includes a substrate with a driving circuit disposed thereon. The driving circuit includes signal conductors for electrically coupling to an external transmit connecting circuit, a conductive laser mounting section, and an impedance matching network. The impedance matching network includes a plurality of resistors, with one or more of the resistors being selectively electrically coupled to the conductive laser mounting section to introduce a selected amount of impedance to minimize or otherwise reduce reflection.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: March 31, 2020
    Assignee: Applied Optoelectronics, Inc
    Inventors: Kai-Sheng Lin, Ziliang Cai, Chong Wang
  • Patent number: 10514515
    Abstract: An optical transceiver module is disclosed having a housing that includes at least a first housing portion and a second housing portion, each of the first and second housing portions including a base portion having at least one sidewall extending therefrom that defines a compartment. The first housing portion is configured to couple to the second housing portion to form a cavity therebetween. A transmitter optical subassembly (TOSA) arrangement coupled to the base portion of the first housing portion and is electrically coupled to a first flexible printed circuit (FPC). A receiver optical subassembly (ROSA) arrangement is coupled to the base portion of the second housing portion and is electrically coupled to a second FPC. A first shield coupled to at least one of the first housing portion or the second housing portion to reduce electromagnetic interference between the TOSA arrangement and the ROSA arrangement.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: December 24, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Hsiu-Che Wang, Ziliang Cai
  • Patent number: 10514510
    Abstract: The present disclosure is directed to a keyed optical component assembly that ensures that the same has a proper orientation when press-fit into or otherwise coupled to a complimentary opening of an optical subassembly housing. In an embodiment, the keyed optical component assembly includes a base portion defined by a first end and a second end disposed opposite the first end along a longitudinal axis. A first arcuate region extends from the first end towards the second end and transitions into a tapered region. A second arcuate region extends from the second end towards the first end and also transitions into the tapered region. Therefore, the tapered region extends between the first arcuate region and the second arcuate region, and generally tapers/narrows from the second arcuate region to the first arcuate region. The resulting shape of the base portion may generally be described as an asymmetric tear-drop shape.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: December 24, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Justin Lii, Hao-Hsiang Liao
  • Patent number: 10509184
    Abstract: In accordance with an embodiment, a welding assembly is disclosed that allows for a laser assembly to be coupled into a socket of the same and held at a fixed position, e.g., by a mechanical grabber of a welding system. The mechanical grabber may then travel along one or more axis to bring the TOSA module into mechanical alignment with an opening of an associated optical subassembly housing. The welding assembly may further include an alignment member that provides one or more alignment contact surfaces configured to be brought directly into contact with a surface of the associated subassembly housing. When the one or more alignment contact surfaces are “flush” with the surface of the subassembly housing the emission face of the TOSA module is substantially parallel, and by extension, optically aligned with the opening of the associated subassembly housing.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: December 17, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Hsiu-Che Wang, Hao-Hsiang Liao
  • Patent number: 10451825
    Abstract: The present disclosure is generally directed to an optical transceiver module with a locking arrangement that allows the optical transceiver module to be releasably coupled into an associated receptacle of an optical transceiver cage. The locking arrangement includes a handle member with teeth configured to engage notches of an actuating member to allow rotational movement of the handle to be translated into linear movement by the actuating member. The linear movement of the actuating member may be independent of the housing of the optical transceiver module, and as the handle is transitioned from a locked position to a release position such movement of the actuating member can urge release of the locking members of the optical transceiver cage by way of the tab portions of the actuating member. A user may then supply a force, e.g., a pulling force, to remove the unlocked subassembly module from the receptacle.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: October 22, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Ziliang Cai, Hao-Chiang Cheng
  • Patent number: 10418782
    Abstract: A wavelength-selectable laser device providing spatially-selectable wavelength(s) may be used to select one or more wavelengths for lasing in a tunable transmitter or transceiver, for example, in a wavelength division multiplexed (WDM) optical system such as a WDM passive optical network (PON). The wavelength-selectable laser device uses a dispersive optical element, such as a diffraction grating, to disperse light emitted from a laser emitter and to direct different wavelengths of the light toward a reflector at different spatial positions such that the wavelengths may be selected by allowing light to be reflected from selected spatial position(s) back into the laser emitter. Thus, the reflected light with a wavelength at the selected spatial position(s) is allowed to complete the laser cavity.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: September 17, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Jun Zheng, Stefan J. Murry, Bujin Guo