Patents Assigned to Applied Vacuum Coating Technologies Co., Ltd.
  • Patent number: 8580353
    Abstract: A method for treating a surface of a glass substrate according to the invention has the steps of placing the glass substrate into a vacuum treatment chamber, introducing a gas into the vacuum treatment chamber, providing electric power to generate an ion source and using the ion source to treat the surface of the glass substrate. By this way, the invention can achieve an effect of surface cleaning and further render the conductive film to be coated on the glass substrate in the subsequent stage to have a reduced surface resistance, thereby improving the conductivity of the glass substrate. The film coated on the glass substrate in the subsequent stage will have higher crystalline level as well.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: November 12, 2013
    Assignee: Applied Vacuum Coating Technologies Co., Ltd.
    Inventors: Chien-Min Weng, Shih-Liang Chou, Tzu-Wen Chu, Fu-Jen Wang
  • Patent number: 8576198
    Abstract: The present invention discloses a touch panel structure formed by an anti-scratch surface layer and a capacitive sensor layer, and a transparent lamination layer is used for pasting the two into a panel. The capacitive sensor layer includes an X-axis first transparent conductive layer and a Y-axis second transparent conductive layer formed on both sides of a transparent plastic carrier to provide a touch panel structure having the advantages of a relatively low material cost, a light weight, an easy manufacturing and molding, a better lamination yield and a flexible and break-free feature.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: November 5, 2013
    Assignee: Applied Vacuum Coating Technologies Co., Ltd.
    Inventors: Hsueh-Chih Chiang, Shih-Liang Chou, Jyh-An Chen, Ming-Hung Hsieh
  • Patent number: 8525809
    Abstract: The present invention discloses a touch panel structure formed by an anti-scratch surface layer and a capacitive sensor layer, and a transparent lamination layer is used for pasting the two into a panel. The capacitive sensor layer includes an X-axis first transparent conductive layer and a Y-axis second transparent conductive layer formed on both sides of a transparent plastic carrier to provide a touch panel structure having the advantages of a relatively low material cost, a light weight, an easy manufacturing and molding, a better lamination yield and a flexible and break-free feature.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: September 3, 2013
    Assignee: Applied Vacuum Coating Technologies Co., Ltd.
    Inventors: Hsueh-Chih Chiang, Shih-Liang Chou, Jyh-An Chen, Ming-Hung Hsieh
  • Patent number: 8245535
    Abstract: A method of strengthening glass plate is provided. A plasma treating process is performed on a glass plate so that a surface pore variation of the glass plate after the plasma treating process is reduced relative to the surface pore variation of the glass plate before the plasma treating process, wherein the surface pore variation is a variation degree of surface pores in different unit areas of the glass plate. In the mean time, a melted network crosslinking structure is formed on the surface of the glass plate. Based on the above-mentioned mechanisms, the glass plate is strengthened. The plasma treating process is conducive to strengthen the glass plate whether the plasma treating process is performed before or after the conventional chemical strengthening process.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: August 21, 2012
    Assignees: Applied Vacuum Coating Technologies Co., Ltd., Avct Optical Electronic Co., Ltd.
    Inventors: Chien-Min Weng, Tzu-Wen Chu, Chiao-Ning Huang, Fu-Jen Wang, Shih-Liang Chou, I-Wen Lee, Ching-Hsiu Cheng
  • Publication number: 20120050173
    Abstract: The present invention proposes a surface capacitive integrated touch panel and manufacturing method thereof. The touch panel comprises a transparent substrate, an icon or artwork layer coated on the periphery of one side face of the transparent substrate, and the inner periphery of the icon layer is not perpendicular to the adjacent line of the transparent substrate. It also comprises a sensing layer which is stacked on icon layer or artwork layer and the areas on the transparent substrate uncovered with the icon layer or artwork layer. Other than that, it comprises a metal layout and an electrode pattern which are formed from the outer of the icon layer to its inner side. The electrode pattern is formed via coating, printing or spraying. This unconventional way of laminating the electrode pattern structures can effectively lower the overall thickness of the panel and increase yield rate.
    Type: Application
    Filed: August 27, 2010
    Publication date: March 1, 2012
    Applicants: AVCT OPTICAL ELECTRONIC CO., LTD., APPLIED VACUUM COATING TECHNOLOGIES CO., LTD.
    Inventors: SHIH-LIANG CHOU, HSUEH-CHIH CHIANG, CHIEN-MIN WENG, JYH-AN CHEN, SHR-LUNG CHEN, I-WEN LEE, HSING-YEH CHEN
  • Publication number: 20110234507
    Abstract: The present invention provides an integrated touch panel comprising a transparent substrate, one of an icon or artwork layer, a first layer of optical film, and a first sensing layer. The icon layer or artwork layer is coated on the periphery of one side face of the transparent substrate, and the inner periphery of the icon layer or artwork layer is not perpendicular to the adjacent line of the transparent substrate. The first layer of optical film is stacked on icon layer or artwork layer and the areas on the transparent substrate uncovered with icon layer. The first sensing layer is stacked on the first layer of optical film by sputtering. The interchangeability is included in the patent claim of the present invention. As icon layer or artwork layer is not perpendicular to the transparent substrate, the subsequent cladding of the structures may be completed by sputtering or other methods.
    Type: Application
    Filed: July 30, 2010
    Publication date: September 29, 2011
    Applicants: APPLIED VACUUM COATING TECHNOLOGIES CO., LTD., AVCT OPTICAL ELECTRONIC CO., LTD.
    Inventors: SHIH-LIANG CHOU, HSUEH-CHIH CHIANG, CHIEN-MIN WENG, TZU-WEN CHU, FU-JEN WANG, I-WEN LEE, HSING-YEH CHEN
  • Publication number: 20110056244
    Abstract: A method of strengthening glass plate is provided. A plasma treating process is performed on a glass plate so that a surface pore variation of the glass plate after the plasma treating process is reduced relative to the surface pore variation of the glass plate before the plasma treating process, wherein the surface pore variation is a variation degree of surface pores in different unit areas of the glass plate. In the mean time, a melted network crosslinking structure is formed on the surface of the glass plate. Based on the above-mentioned mechanisms, the glass plate is strengthened. The plasma treating process is conducive to strengthen the glass plate whether the plasma treating process is performed before or after the conventional chemical strengthening process.
    Type: Application
    Filed: October 8, 2009
    Publication date: March 10, 2011
    Applicants: APPLIED VACUUM COATING TECHNOLOGIES CO., LTD., AVCT OPTICAL ELECTRONIC CO., LTD
    Inventors: Chien-Min Weng, Tzu-Wen Chu, Chiao-Ning Huang, Fu-Jen Wang, Shih-Liang Chou, I-Wen Lee, Ching-Hsiu Cheng
  • Patent number: 7867634
    Abstract: A ITO layer structure, which is composed of the ITO as the outermost layer and the first anti-reflected layer on the specific side of the transparent substrate, furthermore, the second anti-reflected layer is formed on the opposite side of substrate, can improve the total transmittance.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: January 11, 2011
    Assignee: Applied Vacuum Coating Technologies Co., Ltd.
    Inventors: Jau-Jier Chu, I-Wen Lee, Shih-Liang Chou, Po-Yao Lai, Chien-Min Weng
  • Publication number: 20100101937
    Abstract: A method of fabricating transparent conductive film including the following steps is provided. First, a reactive chamber having at least a target and at least a heating device is provided. Subsequentially, a plasma is generated in the reactive chamber, wherein the plasma is located above the target. Next, the plasma is heated by the heating device from a standby temperature to a working temperature. Simultaneously, a hard plastic substrate is passed above the plasma at a specific speed, wherein the particles of the target are bombarded by the plasma so as to form transparent conductive film on the hard plastic substrate.
    Type: Application
    Filed: October 29, 2008
    Publication date: April 29, 2010
    Applicant: Applied Vacuum Coating Technologies Co., Ltd.
    Inventors: Chien-Min Weng, Tzu-Wen Chu, Chiao-Ning Huang, I-Wen Lee, Shih-Liang Chou
  • Patent number: 6586101
    Abstract: An anti-reflection coating layer system is composed of 4 oxide layers. The material of surface layer is a transparent conductive coating and has a high refractive index between 1.9 to 2.1. The materials used for the surface layer are a transparent conductive coating such as SnO2, ZnO2, In2O3, and ITO.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: July 1, 2003
    Assignee: Applied Vacuum Coating Technologies Co., Ltd.
    Inventor: Jau-Jier Chu
  • Patent number: 6532112
    Abstract: An anti-reflection layer system is composed of 5 layers of oxide materials and the materials of the outermost layer has a high-refractive index between 1.9 to 2.1. The materials of outermost layer are a kind of transparent conductive coating such as SnO2, ZnO2, In2O3 and ITO. Because of the surface layer has a good electrical conductive property, the layer system reduce much of work of grounding process and also increase the total yield in the volume production. The present invention provided a surface conductive layer structure of anti-reflection coating, which can be applied not only on display industry but also on touch sensor industry for glass and plastic substrate.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: March 11, 2003
    Assignee: Applied Vacuum Coating Technologies Co., Ltd.
    Inventor: Jau-Jier Chu
  • Patent number: 6478932
    Abstract: A combination process of vacuum sputtering and wet coating produces a high conductivity and light attenuation anti-reflection coating on a substrate of a CRT surface. The coating includes five layers by vacuum sputtering and one layer on top of the coating by conventional wet process. The layers produced by vacuum sputtering provides high anti-reflection, low resistivity, and light-attenuation effect. The layer produced by wet process provides fingerprint proof effect.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: November 12, 2002
    Assignee: Applied Vacuum Coating Technologies Co., Ltd.
    Inventors: Jau-Jier Chu, Jau-Sung Lee, Cheng-Chen Shih, Shao-Chi Chang
  • Patent number: 6441964
    Abstract: An anti-reflection with high conductivity and transmission controlled multi-layer coating for Flat CRT products is provided which includes five layers coating by vacuum sputtering and one layer coating by conventional wet process. The first layer is formed by an oxide material. The second layer is arranged on an underlying first layer and is formed by a metal. The third layer is arranged on an underlying second layer and is coated by vacuum sputtering. The third layer provides high conductivity thin film with resistance as low as 102 &OHgr;/square. The fourth layer is arranged on an underlying third layer and is formed by an oxide material. The fifth layer is formed by an oxide material. The fourth layer and fifth layer are coated by vacuum sputtering. The sixth layer is deposited on the top surface and is formed by a wet silica coating process.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: August 27, 2002
    Assignee: Applied Vacuum Coating Technologies Co., Ltd.
    Inventors: Jau-Jier Chu, Chao-Sung Li, Cheng Chen Shih, Shao Chi Chang
  • Patent number: 6337771
    Abstract: An anti-reflection high conductivity multi-layer coating for CRT products includes three layers coating created by vacuum sputtering and a fourth layer coating created by wet coating process. A first layer, nearest to the substrate, is made of a transparent conductive oxide material having a refractive index within the approximating range of 1.85 to 2.1 at a wavelength of 520 nm. The second layer is formed from an oxide material having a refractive index within the range of 1.45 to 1.50 at a wavelength of 520 nm. The third layer is formed of an oxide material having a refractive index within the range of 1.85 to 2.2 at a wavelength of 520 nm. The fourth layer has a refractive index within the range of 1.45 to 1.55 at a wavelength of 520 nm.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: January 8, 2002
    Assignee: Applied Vacuum Coating Technologies Co., Ltd.
    Inventors: Jau-Jier Chu, Jau-Sung Lee