Abstract: A hybrid electro-pressure driven method for the recovery, purification, and concentration of lithium salts is described. A fractionating electrodialysis stack equipped with selective ion exchange membranes is used to separate a lithium containing brine into a monovalent enriched fraction and a divalent enriched fraction. The monovalent enriched fraction is further processed to remove remaining impurities by use of pressure driven nanofiltration. An optional concentrating electrodialysis device may further concentrate the monovalent enriched fraction in lithium content. The method may be combined with a subsequent solvent extraction and electrolysis step to produce lithium hydroxide, a Li+ selective sorbent step for producing purified lithium chloride, or a Li+ selective sorbent and precipitative step to produce lithium carbonate.
Abstract: A hybrid electro-pressure driven method for the recovery, purification, and concentration of lithium salts is described. A fractionating electrodialysis stack equipped with selective ion exchange membranes is s used to separate a lithium containing brine into a monovalent enriched fraction and a divalent enriched fraction. The monovalent enriched fraction is further processed to remove remaining impurities by use of pressure driven nanofiltration. An optional concentrating electrodialysis device may further concentrate the monovalent enriched fraction in lithium content. The method may be combined with a subsequent solvent extraction and electrolysis step to produce lithium hydroxide, a Li+ selective sorbent step for producing purified lithium chloride, or a Li+ selective sorbent and precipitative step to produce lithium carbonate.
Abstract: A hybrid electro-pressure driven method for the recovery, purification, and concentration of lithium salts is described. A fractionating electrodialysis stack equipped with selective ion exchange membranes is s used to separate a lithium containing brine into a monovalent enriched fraction and a divalent enriched fraction. The monovalent enriched fraction is further processed to remove remaining impurities by use of pressure driven nanofiltration. An optional concentrating electrodialysis device may further concentrate the monovalent enriched fraction in lithium content. The method may be combined with a subsequent solvent extraction and electrolysis step to produce lithium hydroxide, a Li+ selective sorbent step for producing purified lithium chloride, or a Li+ selective sorbent and precipitative step to produce lithium carbonate.