Abstract: A method includes obtaining total stresses and pore pressures of each porous medium of a formation, determining a first and second set of effective stresses for the formation, determining an individual collapse and fracturing mud weight for each porous medium of the formation using a first set of associated failure criteria, wherein the first set of associated failure criteria are based on the first set of effective stresses, determining an overall collapse and fracturing mud weight for the formation using a second set of associated failure criteria, wherein the second set of associated failure criteria is based on the second set of effective stresses, determining a mud weight window for the formation using the individual collapse mud weight, the individual fracturing mud weight, the overall collapse mud weight, and the overall fracturing mud weight, and transmitting a command to a drilling system based on the mud weight window.
Type:
Application
Filed:
January 14, 2022
Publication date:
July 20, 2023
Applicant:
ARAMCO SERVICES COMPANY
Inventors:
Chao Liu, Yanhui Han, Dung T. Phan, Younane N. Abousleiman
Abstract: A method for determining SRV and EUR includes: monitoring an amount and a density of a hydrocarbon fluid produced from the production well; obtaining a cumulative amount of the fluid that has accumulated from a beginning of production; obtaining a relationship between the cumulative amount and a square root of the time; determining a deviation point where the relationship changes from linear to non-linear; determining a deviation amount of the fluid corresponding to the deviation point; determining a first density of the hydrocarbon fluid at the beginning of production, a second density at a pore pressure equal to a bottom hole pressure in the production well, a first porosity at the beginning of production, and a second porosity for a pore pressure equal to the bottom hole pressure; and determining SRV and the EUR based on the deviation amount, the first and second densities, and the first and second porosities.
Abstract: A composition that includes a polymer-grafted graphene particle and oil-based drilling fluid is provided. At least one side of the graphene particle comprises a grafted polymer. A method of using an oil-based drilling fluid is also provided. The method includes introducing the oil-based drilling fluid into a wellbore and circulating the oil-based drilling fluid during drilling operations. The drilling fluid includes a polymer-grafted graphene particle and oil-based drilling fluid. At least one side of the graphene particle comprises a grafted polymer. The oil-based drilling fluid includes a range of from about 0.01 ppb to 10 ppb of the polymer-grafted graphene particle.
Abstract: Degradable polymer additives are provided. The degradable polymer additives include a tracer functional group that is bonded to a base polymeric component by a hydrolysable covalent bond. The base polymeric component is a polysaccharide. The tracer functional group is selected from the group comprising a halogen-containing functional group, a substituted heterocyclic aromatic group, and combination thereof. A method utilizing the degradable polymeric additives in an altered drilling fluid is provided. Such a method includes introducing the altered drilling fluid into a wellbore and recovering an associated wellbore cutting from a depleted drilling fluid.
Type:
Grant
Filed:
July 14, 2021
Date of Patent:
July 11, 2023
Assignees:
ARAMCO SERVICES COMPANY, SAUDI ARABIAN OIL COMPANY
Inventors:
Chengzhe Gao, Shitong Sherry Zhu, Marta Antoniv, Nouf AlJabri
Abstract: A method includes introducing into a drilling fluid a plurality of tags having a first clay nanoparticle and a first polymer embedded into the clay nanoparticle and circulating the drilling fluid and tags through a well during a drilling operation that creates formation cuttings such that the tags interact with the formation cuttings, creating tagged cuttings. The returned cuttings are collected from the circulating drilling fluid at a surface of the well, and the tags on the returned cuttings are detected to identify the tagged cuttings. The method also includes correlating the tagged cuttings with a drill depth in the well from the drilling operation.
Abstract: A wellbore fluid may include a base fluid and at least one cationic heterocyclic polymer in an amount effective to increase a viscosity of the base fluid, the cationic heterocyclic polymer includes at least two distinct cyclic monomers, at least one of which has at least two heteroatoms in the cyclic structure. A method of drilling a wellbore may introduce such wellbore fluid into the wellbore. A method of producing a cationic heterocyclic polymer may include reacting, in a solvent selected from the group that includes tetrahydrofuran, dioxane, dichloromethane, alcoholic solvents, chlorinated solvents, aromatic hydrocarbon solvents, or mixture thereof, at least two distinct cyclic monomers, at least one of which has at least two heteroatoms in the cyclic structure.
Abstract: A method includes preparing a rocklike core sample for compressive testing, the rocklike core sample defining a longitudinal axis and having first and second axial ends. Preparing the rocklike core sample includes providing a throughhole in the rocklike core sample, the throughhole extending between a first opening at the first axial end and a second opening at the second axial end, wherein the first opening and the second opening are dimensioned differently. The rocklike core sample is mounted in a compressive testing apparatus, and a compressive test is performed on the rocklike core sample in the compressive testing apparatus. The compressive test includes compression in axial and radial directions. A related system includes a compressive testing apparatus and a sample preparation apparatus which prepares a rocklike core sample for compressive testing in the compressive testing apparatus, via providing a throughhole in the rocklike core sample.
Type:
Application
Filed:
December 17, 2021
Publication date:
June 22, 2023
Applicants:
SAUDI ARABIAN OIL COMPANY, ARAMCO SERVICES COMPANY
Inventors:
Khalid M. Alruwaili, Yanhui Han, Murtadha J. AlTammar
Abstract: A method for developing a procedure for pretreating a section of a wellbore prior to hydraulic fracturing stimulation of the section of the wellbore includes determining an optimized notch geometry and determining an optimized chemical treatment for the section of the wellbore. The optimized notch geometry is determined by modeling a notch in the section of the wellbore using a computing system, simulating a pressure increase in the section of the wellbore and on the notch from a hydraulic fracturing stimulation, identifying breakdown pressure in the section of the wellbore, and repeating the modeling, simulating, and identifying to determine the optimized notch geometry in the wellbore as the notch having a lowest breakdown pressure. The optimized chemical treatment is determined by determining a rock type in the section of the wellbore and determining a conditioning fluid that reduces the tensile strength of the rock type.
Type:
Application
Filed:
December 21, 2021
Publication date:
June 22, 2023
Applicants:
ARAMCO SERVICES COMPANY, SAUDI ARABIAN OIL COMPANY
Inventors:
Yanhui Han, Feng Liang, Khalid M. Alruwaili
Abstract: A system for determining a direction for drilling a well is disclosed. The system has a device in a portion of a conveyance mechanism comprising a cylindrical housing with at least one sensor that tracks a position of the portion during a drilling operation, the device being configured to obtain a plurality of drilling parameters, and a control system coupled to the device and configured to perform at least one reservoir simulation, and prepare a plurality of required parameters while drilling. The device uses an optimization box to simulate increasing an angle between a drilling direction and a maximum horizontal stress by calculating a minimum mud pressure required to prevent borehole collapse. The control system generates an engineering curve representative of each angle simulated and a corresponding mud weight or pressure, and the device and the control system identify an optimal direction corresponding to a minimum drilling mud pressure parameter.
Type:
Application
Filed:
December 16, 2021
Publication date:
June 22, 2023
Applicants:
ARAMCO SERVICES COMPANY, SAUDI ARABIAN OIL COMPANY
Abstract: A method may include obtaining well log data for various wells regarding a geological region of interest. The well log data may correspond to various well logs with different logging types. The method may include assigning, using a grouping algorithm, subsets of the well log data to various groups based on one or more geological attributes. The method may include determining, using the groups and a machine-learning algorithm, various well zones for different portions of a respective well among the wells. The method may include determining interpolated log data using the well log data, the well zones, and an intrawell interpolation process. The method may include generating a formation property volume based on the interpolated log data and the well log data.
Type:
Application
Filed:
December 17, 2021
Publication date:
June 22, 2023
Applicants:
ARAMCO SERVICES COMPANY, SAUDI ARABIAN OIL COMPANY
Inventors:
Weichang Li, Murtadha J. AITammar, Khalid M. Alruwaili, Osman Hamid
Abstract: A method for predicting well production is disclosed. The method includes obtaining a training data set for a machine learning (ML) model that generates predicted well production data based on observed data of interest, generating multiple sets of initial guesses of model parameters of the ML model, using an ML algorithm applied to the training data set to generate multiple individually trained ML models based the multiple sets of initial model parameters, comparing a validation data set and respective predicted well production data of the individually trained ML models to generate a ranking, selecting top-ranked individually trained ML models based on the ranking, using the data of interest as input to the top-ranked individually trained ML models to generate a set of individual predicted well production data, and generating a final predicted well production data based on the set of individual predicted well production data.
Abstract: Formation treatment compositions may include a surfactant and an aqueous acid solution or mixture. The surfactant may include one or more of C6-C20-fluoroalkylsulfonate, C6-C20-alkylarylsulfonate, C6-C20-alkylcycloalkylsulfonate, C6-C20-arylsulfate, C6-C20-alkylphosphonate, C6-C20-arylphosphonate, C6-C20-alkylpolyetherphosphate, C6-C20-alkylpolyetherphosphonate, C6-C20-alkylcarboxylate, C6-C20-arylcarboxylate, and polyoxyethyleneamine. In the formation treatment compositions, the surfactant may be configured to partially or fully adsorb on a carbonate formation to accelerate the partial dissolution of the formation. Methods of treating a formation may include introducing the formation treatment composition into a wellbore such that that the formation treatment composition contacts the formation.
Type:
Application
Filed:
October 13, 2022
Publication date:
June 15, 2023
Applicant:
ARAMCO SERVICES COMPANY
Inventors:
Amy J. CAIRNS, Frank F. CHANG, Mohammed SAYED
Abstract: One or more embodiments relates to a productive consolidated sand pack product. The sand pack product may be a cured resin that is bound to sand particles and has a porous structure. The sand pack product is obtained from curing a resin composition which may include a resin, a curing agent, a chemical blowing agent, a surfactant, a carrier fluid, a pH agent, and a salt. The porous volume may include one or more of trapped gas, bubbles, and open or connected pore space.
Type:
Application
Filed:
December 14, 2021
Publication date:
June 15, 2023
Applicant:
ARAMCO SERVICES COMPANY
Inventors:
Fakuen Frank Chang, Wenwen Li, Feng Liang
Abstract: A method of predicting three-dimensional fracture geometry in a subterranean region of interest is disclosed. The method includes obtaining a strain tensor for the subterranean region of interest, calculating a set of principal strain components from the strain tensor, and determining a strain cyclide from the set of principal strain components. The method further includes calculating a set of quadrimodal fault normal vectors from the strain cyclide and determining an in-plane shear strain magnitude and a shear strain orientation from the set of quadrimodal fault normal vectors.
Abstract: A method may include obtaining seismic data for a geological region of interest. The method may further include determining various velocity semblance values for the geological region of interest using a time window and the seismic data. The method may further include determining, automatically by a computer processor, one or more stacking velocities for the geological region of interest using a traced path based on the velocity semblance values and a path tracing algorithm. The path tracing algorithm may recursively determine an accumulated amplitude array based on the velocity semblance values. The path tracing algorithm may further determine the traced path among the velocity semblance values and the accumulated amplitude array, the traced path corresponding to the one or more stacking velocities. The method may further include generating a velocity model of the geological region of interest using the one or more stacking velocities.
Type:
Application
Filed:
December 15, 2021
Publication date:
June 15, 2023
Applicants:
SAUDI ARABIAN OIL COMPANY, ARAMCO SERVICES COMPANY
Inventors:
Dongliang Zhang, Yi Luo, Constantinos Tsingas, Tong Wang Fei, Hong Liang
Abstract: A monitoring device monitors deformation of a casing installed in a wellbore and housing a production tubing, and includes: a packer installed within an annulus between the casing and the production tubing; a deformable substrate that is disposed at an outer side of the annulus and contacts an inner surface of the casing to deform along with casing deformation; a light source that is disposed on the deformable substrate and emits light towards an inside of the annulus; an imaging device that is disposed in the packer to be opposite to the light source across the annulus and detects the light emitted from the light source; and a processor that produces a signal from the detected light, processes the produced signal, and transmits the processed signal to a surface control device that monitors the deformation of the casing based on the signal.
Type:
Application
Filed:
December 9, 2021
Publication date:
June 15, 2023
Applicants:
SAUDI ARABIAN OIL COMPANY, ARAMCO SERVICES COMPANY
Inventors:
Damian Pablo San Roman Alerigi, Adrian Cesar Cavazos Sepulveda, Sameeh Issa Batarseh, Jose Oliverio Alvarez
Abstract: A formation treatment fluid may include a wettability alteration agent, a solvent, an injection gas, and an optional foaming agent. The wettability alteration agent may include a fluorinated surfactant, a silicon-based surfactant, charged nanoparticles partially modified with fluorine containing groups, or combinations thereof. Methods for altering a hydrocarbon-bearing reservoir surface wettability may include providing the formation treatment fluid, injecting the formation treatment fluid into the hydrocarbon-bearing reservoir, and recovering fluids produced from the hydrocarbon-bearing reservoir.
Type:
Application
Filed:
December 15, 2021
Publication date:
June 15, 2023
Applicant:
ARAMCO SERVICES COMPANY
Inventors:
Mohammed Ali Ibrahim Sayed, Rajesh Saini
Abstract: A method may include obtaining, using a gamma-ray detector, first acquired gamma-ray data regarding a first core sample. The first acquired gamma-ray data may correspond to various sensor steps. The method may further include determining a sensitivity map based on the first acquired gamma-ray data. The method may further include obtaining, using the gamma-ray detector, second acquired gamma-ray data regarding a second core sample at the sensor steps. The method further includes generating a gamma-ray log using the sensitivity map and a gamma-ray inversion process.
Type:
Application
Filed:
November 16, 2021
Publication date:
May 18, 2023
Applicant:
ARAMCO SERVICES COMPANY
Inventors:
Jin-Hong Chen, Stacey M. Althaus, Houzhu Zhang
Abstract: A method includes introducing into a drilling fluid a plurality of tags having a first clay nanoparticle and a first polymer embedded into the clay nanoparticle and circulating the drilling fluid and tags through a well during a drilling operation that creates formation cuttings such that the tags interact with the formation cuttings, creating tagged cuttings. The returned cuttings are collected from the circulating drilling fluid at a surface of the well, and the tags on the returned cuttings are detected to identify the tagged cuttings. The method also includes correlating the tagged cuttings with a drill depth in the well from the drilling operation.
Abstract: A composition for treating a formation includes a surfactant including an amphiphilic block copolymer having a first block and a second block and an acid. The amphiphilic block copolymer is a reaction product of a first monomer and a second monomer via a reversible addition-fragmentation chain transfer polymerization (RAFT) in a two-step reaction using a chain transfer agent (CTA) and a radical initiator. The surfactant favors adsorption onto a surface of the formation such that a temporary barrier is formed, thereby attenuating a reaction rate between the acid and the formation.
Type:
Application
Filed:
October 29, 2021
Publication date:
May 4, 2023
Applicant:
ARAMCO SERVICES COMPANY
Inventors:
Sivaprakash Shanmugam, Amy J. Cairns, Mohammed Sayed