Abstract: The gas discharge lamp contains a lamp body and an UV unit. The UV unit contains a separate airtight chamber wrapping around at least a neck member of the lamp body and covering at least a part of a Mo tinsel inside the neck member. The airtight chamber is filled with one or more gases capable of being ionized, and is wound by a conductor whose one end is connected to a conduction wire extended out of one of the neck members. When the gas discharge lamp is turned on, the gases in the airtight chamber are ionized to produce an UV light to penetrate the discharge chamber. The gas discharge lamp therefore could have a lower starting voltage and an improved starting efficiency. Additionally, as the airtight chamber provides a heat insulation effect, the temperature-induced stress is thereby reduced.
Type:
Grant
Filed:
April 17, 2009
Date of Patent:
February 22, 2011
Assignee:
Arclite Optronics Corporation
Inventors:
Long Chen, Hui-Hsiang Feng, Ya-Chuan Yeh
Abstract: The light generation device contains a bowl-shaped reflection member for light focusing, a gas-discharge light bulb inside the reflection member, and a lens element positioned on the light bulb blocking the light beams emitted towards a front opening of the reflection member. In one embodiment, the lens element has a curved front surface so that incident light beams are refracted and redirected toward a focus point of the reflection member. In another embodiment, the lens element has a curved back surface of a specific curvature so that light beams traveling towards the lens element are reflected and redirected towards the reflection member which in turn are reflected again and focused by the reflection member.
Abstract: The lighting device contains a quartz tube and a UV production member. In addition to a main chamber for high intensity discharge, the quartz tube has an auxiliary chamber formed around the conductor in a first end section. The UV production member contains a probe and a coil surrounding the first end section. An end of the coil is connected to a conducting wire from the other end section of the quartz tube. The other end of the coil is connected to the probe whose tip penetrates through the first end section of the quartz tube into the auxiliary chamber and points to the main chamber. When a voltage is applied, electrons are shot from the tip of the probe into the gas in the auxiliary chamber, and UV light is thereby produced and directed into the main chamber for the enhanced activation of the lighting device.