Patents Assigned to Areté Associates
  • Publication number: 20240039229
    Abstract: Described herein are isolated ring cavities that have refractive and heat-generating components physically separated and mechanically held by flexure mounts that are adapted to function in combination with the physically separated structure to moderate the thermal expansion effects of the heat generated by the refractive and other heat-generating elements (e.g., gain element) of the optical cavity. The flexure mounts may be configured as thinned portions of connective elements, reducing the effects of thermal expansion of the baseplate and allowing a thermal isolation from the baseplate. Multiple flexure mounts may be arranged to minimize further the effects of thermal expansion of the baseplate.
    Type: Application
    Filed: February 17, 2023
    Publication date: February 1, 2024
    Applicant: Arete Associates
    Inventor: Micah Boyd
  • Patent number: 11789152
    Abstract: Lidar systems and methods are presented herein. In one embodiment, a lidar system includes a laser operable to propagate ultrashort laser pulses to a target during a plurality of scanning periods. The lidar system also includes a streak tube imaging system operable to collect returns of the ultrashort laser pulses from the target during each scanning period, and to generate a two-dimensional image of the returns during each scanning period. The lidar system also includes a processor operable to generate a representation of the target based on the 2D images from the streak tube imaging system.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: October 17, 2023
    Assignee: Arete Associates
    Inventor: Paul Bryan Lundquist
  • Patent number: 11611188
    Abstract: Described herein are isolated ring cavities that have refractive and heat-generating components physically separated and mechanically held by flexure mounts that are adapted to function in combination with the physically separated structure to moderate the thermal expansion effects of the heat generated by the refractive and other heat-generating elements (e.g., gain element) of the optical cavity. The flexure mounts may be configured as thinned portions of connective elements, reducing the effects of thermal expansion of the baseplate and allowing a thermal isolation from the baseplate. Multiple flexure mounts may be arranged to minimize further the effects of thermal expansion of the baseplate.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: March 21, 2023
    Assignee: Arete Associates
    Inventor: Micah Boyd
  • Patent number: 11506786
    Abstract: Systems and methods herein provide for Laser Detection and Ranging (Lidar). One Lidar system includes a laser operable to generate laser light. The system also includes a transmitter operable to rotate at a first rate, and to transmit the laser light along a first path from the Lidar system to a target. The system also includes a receiver operable to rotate at the first rate, and to receive at least a portion of the laser light along a second path from the target. The first and second paths are different. The system also includes a processor operable to calculate a range and an angle to the target using an angular displacement between the second path and the receiver that arises from the first rate of rotation for the transmitter and the receiver.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: November 22, 2022
    Assignee: Arete Associates
    Inventor: Paul B. Lundquist
  • Patent number: 11469569
    Abstract: Described herein are methods for developing and maintaining pulses that are produced from compact resonant cavities using one or more Q-switches and maintaining the output parameters of these pulses created during repetitive pulsed operation. The deterministic control of the evolution of a Q-switched laser pulse is complicated due to dynamic laser cavity feedback effects and unpredictable environmental inputs. Laser pulse shape control in a compact laser cavity (e.g., length/speed of light <˜1 ns) is especially difficult because closed loop control becomes impossible due to causality. Because various issues cause laser output of these compact resonator cavities to drift over time, described herein are further methods for automatically maintaining those output parameters.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: October 11, 2022
    Assignee: Arete Associates
    Inventor: Micah Boyd
  • Patent number: 11385350
    Abstract: Embodiments herein provide for improved range response in lidar systems. In one embodiment, a lidar system includes a laser, and a detector. First optics direct light from the laser on a beam path along a first optical axis of the first optics. Second optics image the light from the beam path onto a second plane that is substantially normal to the first plane. The second optics have a second optical axis that differs from the first optical axis. The first and the second optical axes lie in a same first plane. A first line in the first plane intersects a second line in the second plane at an acute angle. The first line is perpendicular to the first optical axis. A spatial filter configured in or near the second plane filters the light from the second optics onto the detector.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: July 12, 2022
    Assignee: Arete Associates
    Inventors: Paul B. Lundquist, Gregory J. Fetzer, Richard Vercillo, Michael Francis Marnon, Thomas Laurence Kraus
  • Patent number: 11237267
    Abstract: Systems and methods herein provide for Laser Detection and Ranging (Lidar). In one embodiment, a Lidar system includes a laser operable to propagate continuous wave (CW) laser light and a scanner operable as a transmitter and a receiver for the CW laser light. The Lidar system also includes a detector for determining a range to a target based on displacement of the CW laser light received by the receiver. The displacement of the CW laser light is proportional to an angular velocity of the scanner.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: February 1, 2022
    Assignee: Arete Associates
    Inventor: Paul Bryan Lundquist
  • Patent number: 11156483
    Abstract: Systems and methods herein provide for floating sensors. In one embodiment, a system includes a waterproof housing, an electronics assembly mounted within the waterproof housing, and a wing structure hingeably attached to the waterproof housing and operable to float the system on a water surface. The system also includes a solar panel configured on the wing structure to provide power to the electronics assembly.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: October 26, 2021
    Assignee: Arete Associates
    Inventors: Michael Francis Marnon, Guy Joseph Farruggia, Jr., James Edward Friel, Justin Peel, Steven Richard Charles Floyd
  • Publication number: 20210255323
    Abstract: Systems and methods herein provide for Laser Detection and Ranging (Lidar). One Lidar system includes a laser operable to generate laser light. The system also includes a transmitter operable to rotate at a first rate, and to transmit the laser light along a first path from the Lidar system to a target. The system also includes a receiver operable to rotate at the first rate, and to receive at least a portion of the laser light along a second path from the target. The first and second paths are different. The system also includes a processor operable to calculate a range and an angle to the target using an angular displacement between the second path and the receiver that arises from the first rate of rotation for the transmitter and the receiver.
    Type: Application
    Filed: March 30, 2020
    Publication date: August 19, 2021
    Applicant: Arete Associates
    Inventor: Paul B. Lundquist
  • Patent number: 10903617
    Abstract: Provided herein are systems and methods of manufacture and operation for a compact laser to achieve high-intensity output pulses. These compact laser resonators and methods rely upon separate and distinct functions of the laser resonator to be operated in balance such that the functions, while deleterious when separate are supportive of laser generation and growth when combined within a small volume laser resonator as described herein. The combined elements of the described laser resonator include a delicate balance that allows the laser to operate between plane-parallel operation and unstable operation. This operation mode further allows distinct methods of construction and operation that allow the compact laser to be reliably assembled and tested during assembly. Therefore, despite requiring a delicate balance of disparate elements, the described laser resonator results in a compact robust laser.
    Type: Grant
    Filed: June 8, 2019
    Date of Patent: January 26, 2021
    Assignee: Arete Associates
    Inventors: Micah Boyd, James Murray
  • Patent number: 10855050
    Abstract: Described herein are methods for developing and maintaining pulses that are produced from compact resonant cavities using one or more Q-switches and maintaining the output parameters of these pulses created during repetitive pulsed operation. The deterministic control of the evolution of a Q-switched laser pulse is complicated due to dynamic laser cavity feedback effects and unpredictable environmental inputs. Laser pulse shape control in a compact laser cavity (e.g., length/speed of light<˜1 ns) is especially difficult because closed loop control becomes impossible due to causality. Because various issues cause laser output of these compact resonator cavities to drift over time, described herein are further methods for automatically maintaining those output parameters.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: December 1, 2020
    Assignee: Arete Associates
    Inventor: Micah Boyd
  • Publication number: 20200295520
    Abstract: Described herein are isolated ring cavities that have refractive and heat-generating components physically separated and mechanically held by flexure mounts that are adapted to function in combination with the physically separated structure to moderate the thermal expansion effects of the heat generated by the refractive and other heat-generating elements (e.g., gain element) of the optical cavity. The flexure mounts may be configured as thinned portions of connective elements, reducing the effects of thermal expansion of the baseplate and allowing a thermal isolation from the baseplate. Multiple flexure mounts may be arranged to minimize further the effects of thermal expansion of the baseplate.
    Type: Application
    Filed: May 28, 2020
    Publication date: September 17, 2020
    Applicant: Arete Associates
    Inventor: Micah Boyd
  • Patent number: 10714887
    Abstract: Provided herein are systems and methods of manufacture and operation for a compact laser to achieve high-intensity output pulses. These compact laser resonators and methods rely upon separate and distinct functions of the laser resonator to be operated in balance such that the functions, while deleterious when separate are supportive of laser generation and growth when combined within a small volume laser resonator as described herein. The combined elements of the described laser resonator include a delicate balance that allows the laser to operate between plane-parallel operation and unstable operation. This operation mode further allows distinct methods of construction and operation that allow the compact laser to be reliably assembled and tested during assembly. Therefore, despite requiring a delicate balance of disparate elements, the described laser resonator results in a compact robust laser.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: July 14, 2020
    Assignee: Arete Associates
    Inventors: Micah Boyd, James Murray
  • Patent number: 10473786
    Abstract: Systems and methods herein provide for Laser Detection and Ranging (Lidar). In one embodiment, a Lidar system includes a laser operable to propagate continuous wave (CW) laser light and a scanner operable as a transmitter and a receiver for the CW laser light. The Lidar system also includes a detector for determining a range to a target based on displacement of the CW laser light received by the receiver. The displacement of the CW laser light is proportional to an angular velocity of the scanner.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: November 12, 2019
    Assignee: Arete Associates
    Inventor: Paul Bryan Lundquist
  • Patent number: 10436907
    Abstract: Provided herein are systems and methods for an active sensing instrument actively utilizing the Christiansen effect to sense and adapt to suspended scatterers such as dust. The instrument enhances detection of remote surfaces that are partially or fully obscured at visual wavelengths due to those suspended scatterers. The system also may be used to measure properties and spatial distributions of the suspended scatterers themselves. Though the system is broadly applicable to remote detection through scattering media, it is particularly drawn to remote sensing through dust particles in the atmosphere as may be produced from helicopter fly-overs, dust storms, or other events that draw up substantial concentrations of mineral-based dust particles into the air.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: October 8, 2019
    Assignee: Arete Associates
    Inventors: James Murray, Paul Lundquist, Jason Seely, Steve Rako, Micah Boyd
  • Patent number: 10326249
    Abstract: A compact laser is provided for in accordance with an exemplary embodiment in the present disclosure includes a compact resonator structure using a non-planar geometry of bulk components. The laser includes a preferred rotational direction of lasing modes and employs bulk components for establishing the preferred rotational direction of lasing modes within resonator. In some embodiments, the preferred rotational direction of lasing modes is established using a reflective element that is outside the resonator structure. In some embodiments, the reflective element induces polarization shifts in the reflected light that are compensated for by a wave plate, which may be outside the resonator structure.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: June 18, 2019
    Assignee: Arete Associates
    Inventor: James Thomas Murray
  • Patent number: 10073465
    Abstract: Provided herein are systems and methods for scanning an optical sensor on a platform required to operate within a medium having a different pressure than the internal pressure of the sensor, including both underwater and high-altitude applications. For the case of underwater platforms, portions of the vehicle may be pulled or driven by propulsive forces through the water, whereas other portions of the vehicle may carry the platform for optical scanning, attached and rotationally controlled with respect to the driven portion of the vehicle. The platform may be rotated with respect to the portion that is pulled or driven through the water or other fluid. In some embodiments, that driven portion remains rotationally fixed with respect to the water. Other embodiments of vehicles in different environments may interface with different fluids or gasses and may be driven through the fluids or gases in similar manners.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: September 11, 2018
    Assignee: Arete Associates
    Inventors: Michael Francis Marnon, Paul Bryan Lundquist, Charles Patterson Forsyth
  • Patent number: 9910155
    Abstract: Embodiments herein provide for improved range response in lidar systems. In one embodiment, a lidar system includes a laser, and a detector. First optics direct light from the laser on a beam path along a first optical axis of the first optics. Second optics image the light from the beam path onto a second plane that is substantially normal to the first plane. The second optics have a second optical axis that differs from the first optical axis. The first and the second optical axes lie in a same first plane. A first line in the first plane intersects a second line in the second plane at an acute angle. The first line is perpendicular to the first optical axis. A spatial filter configured in or near the second plane filters the light from the second optics onto the detector.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: March 6, 2018
    Assignee: Areté Associates
    Inventors: Paul B. Lundquist, Gregory J. Fetzer, Richard Vercillo, Michael Francis Marnon, Thomas Laurence Kraus
  • Patent number: 9806489
    Abstract: A compact laser is provided for in accordance with an exemplary embodiment in the present disclosure includes a compact resonator structure using a non-planar geometry of bulk components. The laser includes a preferred rotational direction of lasing modes and employs bulk components for establishing the preferred rotational direction of lasing modes within resonator. In some embodiments, the preferred rotational direction of lasing modes is established using a reflective element that is outside the resonator structure. In some embodiments, the reflective element induces polarization shifts in the reflected light that are compensated for by a wave plate, which may be outside the resonator structure.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: October 31, 2017
    Assignee: Arete Associates
    Inventor: James Thomas Murray
  • Patent number: 9719856
    Abstract: Embodiments herein provide for imaging objects. In one embodiment, a spectral imaging system includes an optical element configured to receive electromagnetic energy of a two-dimensional scene and a filter configured to provide a plurality of spectral filter profiles. The filter also transmits multiple spectral wavebands of the electromagnetic energy substantially simultaneously through at least one of the spectral profiles. The spectral imaging system also includes a detector configured to measure intensities of the multiple spectral wavebands, and a processor configured to generate a spectral image of the scene based on the measured intensities.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: August 1, 2017
    Assignee: Areté Associates
    Inventors: Randall Potter, Brian David Clader